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Preface
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Abstrdct

Factor analysis is a multivariate statistical procedure for analyzing and reduc- ‘ '

ing large data se's. Many factor analysis Schemgs and techriiques are available that
lead to strikingly different results from the same data. This research effort used

a Monte Carlo approach to investigate the properties of two rotation methods for

simple structure, Kaiser’s raw and normal varimax criterion. Data sets were devel-

oped from a set of contrived experimental factor patterns by multiplying each factor
pattern by its transpose to create a covariance matrix. Data sets of multivariate nor-
mal deviates were in turn generated from each covariance matrix v.a the Choleski
algorithm. Rotated factor pattern matrices from each data set were compared i~

their respective experimental factor pattern on the basis of structure, loadings and

eigenvalues. These performance issues are addressed through regression analysis -

and separate factor analysis in which the grand mean of proposed measures of effec-
tiveness are predicted. These measures of effectiveness include structure matching

and root mean square error between the experimental and observed factor patterns.

Several methods of characterizing factor pattern complexity and predicting rotation

criterion performance are explored.
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A Meate Carlo Study Of The Raw And Normal
Varimax Rotation Criterion In

Factor Analysis

| L Introduction

The concept that natio;xs must be prepared to defend tnemselves at all times
from every type of outside threat is a relatively modern oue. Prior to World War II,
countries relied on troop mobilization and conscription rather than a large standin»
zrmy. Fortunate for the ili-equipped and poorly trained troops entering WW II; ‘
our scientific and industrial communities were able to put new technology on the
battle field in nuinbers large ¢nough to bring about a favorable end. Also fortunate
was the successful application of quantitative economic analysis and other scientiﬁé'
methods to military operations. Since that timé, we have seen exponential increases ‘
nct orly in weapon lethality but also ia the speed and range of weapon deployment.

The time to develop and transition new technology to the battlefield is a luxury

- we no lorger enjoy, making all future wars come .as you are. As this new policy of . -

military preparedness evolved, so did the role of the operations anélyst. Today’s
military establishment Las accepted the idea that analytic techniques can be abplied

to military policy, strategy and tactics on a regular basis.
1.1 Background

_ The modern operations analyst assists decision makers in allocating resources
for the planning, development, a.cquiéition and use of military systems. In the cur-
rent environment of radical force reductions, effective and efficient allocation is crit- »
ical. Rather than recommend a specific course of action, the analyst best serves the

decision maker by providing insight into competing altzrnatives. This is often ac-
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complished through the an.alyst’s ability to quantify complex interrelationships and
reduce unmanageable amousnts of information. Facto: analysis is an analysis tool
well suited to this t.\'bpe of task. Origirally developed to study behﬁvipral and bio-
logical phenomencn, lactor analyéis is'a statistical technique for simplifyi'ng complex
relationships that exist among a =¢t of observed variables. It accomplishes this by
identifying latent common factors within a data set. By linking seemingly unrelated
variables, these factors provide insig'ht into the interr.elationsh‘ip alnd' structure of the

data (Dillon and Goldstein, 1972:53).

1.2 Problem Statement

Although factor analysis, the technique, goes back to the turn of the century,
(Jackson, 1991:388) it is the increased computational capability of modern computer.
systems that has its application .practical. While this made factor analysis very ac-
cessible, it also led to the proliferation of many different factor analysis techniques
and variations. S'u!bjcc't'ive selection of a particular technique can lead to results strik-
ingly different from that of another researcher in.vestigating the same data. Because

of this failure to render a unique, reproducible solution, many researchers consider |

* factor analysis unsatisfactory as a scientific inethodology{

- 1.3 Research Objectives

1.8.1 Objective. | The primary objective of this research effort was to de-
velop and use a Monte Carlo simulation to assess the sensitivity of factor analysis
accuracy in response to such effects as sample size, variable to factor rat.o, factor
loading strengths and stiucture complexity. The simulation was written in FOR-
TRAN and allows for any modifications necessary to conduct future sensitivity anal-

ysis beyond the scope of this effort.

1.3.2 Secondary Objectives.  Methods to measure and characterize the be-
havior of data to be factor analyzed were developed. Quantifying such behavior pro-

1.2




vides insight into the acciracy to expect from different factor analysis techniques.
This information can provide guidelines for methodology selection, and limit the
amount of subjectivity introduced by the analyst conducting factor analysis activi-

ties.
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II. Literature Review

Factor analysis saw most of its early application in psychology wherevit became
a valuable tool in measurihg underlying differences in aptitude as measured by ‘indi-
" vidual test scores (Frutcher, 1959:vii). Most information concérning' the evolution of
factor analysis is therefore concentrated in literature specific to this area. In addition
to its inherent subjectivity, perhaps it is also the association with this science £hat
causes many to view factor analysis with suspicion. Edward Jackson summarizes

this very well in his User’s Guide to Principal Components when he says,

...the solutions were not unique and the early réputation of factor analysfs
~ was felt by many in the statistical community to be closely associated
with witchcraft” (Jackson, 1991:388).

2.1 Principal Compopents Analysis

. Similar in natufe to factor analysis, principal compbnents analysis is another
statistica.l.metl.md that can be‘ appiied to a group of variables. They are alike in
that both analyze the inter correlation among variables within a single set rather.
than external criteria as in other multivariate techniques. Both attempt to reduce
t_hé xiumber of variables into subgroups. However, principal components anaiysis
performs this reduction by deriving a small set of linear combinations of the original
- variables that explains as much of the total variance of the data as ﬁégéibié:ﬁ Con-
versely, factor analysis concentrates on the variance shared by the variables. Simply
put, principal components analysis views unobservable factors as a function of the
variables, while factor analysis treats the variables as a function of the unobservable

factors (Bauer, 1992)..

2.2 Common Factor Analytic Approach

The factor analysis model assumes a set of intercorrelated variables with each

variable composed of both common and unique parts. The common part, called

21




communality, is the portion of a variable’s variance that is shared with other variables
in the data set. The unique part, known as uniqueness, is that variénce belonging
to this variable alone. Any variance due to measurement or experimental error
would zlso contribute to the unique part of the variable. Shared variance provides
a means o: forming the data into coherent relatively independe 't subgroups. By
studying the structure of the subgroups we <;an gain insight into the process that
.generated the combination of outcomes measured by the variables. In addition to
obéerving the relationship of the variables, factor analysis also enables us to reduce a
large data set to a srﬁa.ller, more manageable set of unobservable variables known as
common factors (Tabachnick and Fidell, 1983:374). The strength of the relationship
(correlations) between the observable variables and unobservable factors is indicated
by values known as factor loadings. An algebraic representation of a two factor

model for a four variable data set is given below.

€1 . | » (2.1)

X = Anfi + Aafa +

X; = Anh + dnfs + e (2.2).
Xs = dath + dn2fs + e | (2.3)
Xe = dafi + dafa + e (2.4)

where

Aij is the correlation of variable X; with factor f;,

i=1,..,p

and
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Also, the sum squared factor loadings for X;

=3 L (25)

is the variable’s communality, the variance accounted for by all the factors. There-

fore, -

& =1-h? . (2.6)

is the uniqueness, the variance not accounted for by the factors. The common factor

analytic model is norfna.lly summarized as follows:

X=Af+o @2.7)

where

X is the p x 1 vector of observed responses,

- A is the p x ¢ matrix of unknown constants (factor ldadings),

- [ is the g x 1 vector of unobservable variables (common factors),

and

® is the p x 1 vector of unobservable variables (unique factors).

The process of calculating the correlations (factor loadings) between the observ-

able variables and the unobservable factors is known as factor extraction. Because

23




the calculations for factor extraction are involved and complex, this section is limited

to the fundamental equations necessary to show the general approach for extracting

factors from a data set. The procedure is outlined below:

o First, the data set should consist of several subjects each of which has been

measured on p variables.
o Generate X, the p x p data correlation matrix

e Calculate the associated eigenvectors and eigenvalues

L=vLVT

where
¥ is the p X p correlation matrix,

V is the p x p matrix of eigenvectors

and

L is the p x p diagonal matrix of eigenvalues.

e Finally, extract the p x p factor loading matrix

A=VVL

where

V is p x d, d being the number of retained factors (dimensionality).

(2.8)

(2.9)




The reader should note that the eigenvalues describe the total variance ex-
plained by the respestive common factors. Eigenvalues can be calculated from a
factor loading matrix by summing the square of the factor loadings for each column

as

DA | (2.10)

2.3 Dimensionality Assessment

Prior to extracting the factor loading matrix, the analyst must make a di-
mensionality assessment in terms of deciding how many of the f; factors should be
retained. The number of eigenvalues, eigenvectors and corresponding common fac-
tors will équal the number of variables in the data set. Therefore, while reducing
the dimensionality of tﬁe data set is desirable, it niust be done without jeopardizing
our ability to interpret the data structure. Several methods have been put forth to
assist in dimensionality assessment, including the scree test (Catell, 1966), Horn’s
test (Horn, 1965) and Kaiser’s criteria (Kaiser, 1960).. Kaiser’s criteria is one of the

simplest methods in that it suggests discarding all factors with an eigenvalue less

than one. For detailed information on dimensionality assessment, especially as it

~ applies to factor analysis, see (Bauer, 1981). -

2.4 E'zploratory versus Confirmatory Factor analysis

Factor analysis is normally conducted in one of two contexts. In the exploratory
context, the xjésearcher has no idea what the underlying structure of the data may be
and conducts factor analysis for vthe purpose of gaining insight into that structure.
If the researcher has no prior information concerning the underlying structure of the
data or is testing some hypothesis for the structure, he is conducting confirmatory

factor analysis.




2.5 Factor Interpretation

When interpreting a factor pattern, we investigate the J;; loadings of the factor

pattern matrix so as to.identify factor-variable correlations and to determine the -

strength of these correlations. A commonly used interpretation heuristic applied

against an example two factor by six variable model (Lawley and Maxwell, 1971) in

Table 2.1 demonstrates factor interpretation.

o For each variable, move across the factors (row) selecting the loading value

~ with the largest absolute value

o Assess each selected loading for significance. A common rule of thumb requires

a loading to be greater than .30

o Address each variable not loaded on a factor and decide if, based on its impor-

‘tance to the analysis, the variable should be dropped

o Assign some intuitive meaning to the pattern of selected loadings that describes

the meaning of the variables that load on each of the factors

Table 2.1. Example Factor Pattern Interpretation

Variables | f; fa hi O
Gaelic 553 429 | .490 .510
English |.568 .288 | .406 .594
History | .392 .450 |.356 .644
Arithmetic | .740 .-273 | .623 .377
Algebra |.724 .-211{.569 .431
Geometry | .595 .-132|.372 .628

If this factor pattern had been extracted from data corresponding to six different
sets of test scores, for example, the researcher might infer that History is influenced

by a mental process independent from that influencing the other subjects.

2-6




2.6 Simple Structure

Unfortunately, not all loading matrices possess structures so simple as to allow

this kind of interpretation procedure. A variable often has moderate loadings on

more than one factor. In these situations, pattern interpretation can become very

subjective and difficult to reproduce. If we could reduce the number of significant
. loadings for a given variable, hopefully the structure would be simplified and easier
to interpret. Before addressing the various methods for simplifying a factor pattern,

it is necessary to decide upon some type of criterion for simple structure. One of the

first and still widely accepted criterion was suggested by Thurstone in 1932 (Kaiser,. |

1958:187). This criterion for a p x ¢ loading matrix consists of the following five
main points (Morrison, 1990:368):

¢ Each row should contain at least one zero

¢ Each column should contain at least ¢ zeros

¢ Every pair of columns should contain several respohses‘Whose loadings vanish
in one colvmn but not in the other

o If the number of factors is four or more, ew}ery pair of columns should contain

a large number o1 responses with zero loadings in both columns

o Conversely, for every pair of columns only a small number of responses should -

have nonzero loadires in both columns

Since simple structures meeting all of Thurstone’s conditions are rarely found in
real world data, most simplification techniques emphasize different aspects of Thur-
stone’s criterion. These techniques fall into 2 class of methodologies known as factor

rotations.

2.7 Factor Rotation

A factor rotation is any transformation of eigenvectors or original variables that

seeks to simplify pattern structure (Jackson, 1991:167). Carroll proposed one of the

27
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first analytic criterion for approximating simple structure. His method minimized
‘the sums of cross products (across factors) of squares of factor loadings (Carroll,
1953). While afriving at a unique solution and approximatiﬁg a simple structure,
Carroll’s method was very computationally complex. Howe, and Lawley and Maxwell
propoéed least squares methods for rotating as closely as possible to a pattern (;f zero
and nonzero loadings. Joreskog developed a methodology utilizing hypothesis test-
ing for simple structure (Morrison, 1990:369). A factor pattern and its associated
i‘otated factor pattern are shown below in Table 2.2 té illustrate the structure sim-
plification that can be a.ccomplished through factor rotation. Although they have
| identi'cal communality and uniqueness, note how using our simple heuristic, the ro-
tated pé.t_tem on the right is far easier to interpret than the original pattern on the

left.

Table 2.2. Example Unrotated versus Rotated Factor Pattern

Variables | fi fo | A & h [ B ¥
Gaelic |.55 .42 .49 .51} 1.36 .59[.49 .51
English |.56 .28 | .40 .59 43 46| .40 .59
History | .39 .45 (.35 .64 : 21 .55(.35 .64
Arithmetic | .74 -27|.62 37 .78 .00 | .52 .37
Algebra | .72 -211.56 43| |75 .05 (.56 .43
Geometry | .59 -.13 .37 .62 .60 .08 .37 .62

Also note that the structure of the rotated pattern has changed from that cf the
original factor pattern. A researcher might now infer that two separate proceéses
underlie the test scores. Namely, language and History are creative or right brain
activities, while tae rexha.iriing subjects are analytical or left brain activities. As men-
tioned, simplification can reduce some of the subjectivity in structure interpretation.
But we also said each rotation téchniqne may choose to accomplish simple structure

through a different aspect of Thurstone’s criterion. Therefore, what was intended

2-8
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to introduce objective, scientific methodology into the proéess has aggravated the

problem and generated controversy. David Saunders wrote:

While some have argued that computers should be used to do factor anal-
 ysis better, rather merely more quickly, it has been difficult to define what
better should mean. Rotation is one of the difficult cases in point. Since
computers have become available, there have been no less than fifteen
distinguishable approaches to formulations of simple structure that are
more or less amenable to computer programming. (Saunders, 1260:199)

Thg thirty years since this statement have seen little improvement. In his Ph.D.
thesis, Henry F. Kaiser addressed some of the original aftempts to stfip away the
subjectivity of factor rotation sc factor analysis could become a proper tool for sci-
entific inquiry. All of these a.ttenipts employed some form of mathematical condition

for simple simple structure.

2.8 Quartimaz Criterion

Neuhaus and Wrigley, Saunders and Ferguson simultaneously suggested one

" of the first rotation criterion for simple structure (Kaiser, 1958:188). Known as the

Quartimax criterion, it seeks to maximize the sum of the fourth powers of the rotated

. 'loadings. This is the mathematical equivalent of attempting to place cnly one major

loading on a given factor. The quartimax criterion remains one of the most popular

" and accessible methodologies today. Its formulated as

ez D082 - e D)

e (2.11)

This was intended to fulfill Thurstone’s requirement that a large loading on one

factor should be opposite a small loading on any adjacent factor.

29
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2.9 Varimaz Crilerion

Henry Kaiser criticized. the quartimax approa.ch because he felt it concen-
trated tco much on Thurstone s mathematically unmanageable, quahtat:ve condi-
tions. Proposing a departure frqr'n Thurstone’s criterion, Kaiser pursued simple
structure by maxivmizing‘ the variance of the loadings across variables within factors.
With this approach, loadings tend tp become higher for those variables with high
correlations with a factor and smaller for the othef variables (Tabachnick and Fidell

,1983:398). Kmser named this criterion the varimax criterion. Varimax is also a
- very popular rotatxon procedure and is found in all statistics software packages Its

formulation is

maxz[z,\ | '*"\2)]., | | (212)

J=1 Li=1 4

2.10 Normal Varimaz Criterion

Kaiser conducted numerous expe:iméhts to assess the properties of both the
quartimax and varimax criterion. In these experiménts, he generated rotated factor
patterns with the quartimax and varimax criterion from data produced by a series

I of,,twen.ty,-fou'r psychological tests- administered by Holzingpr and Harman (Kaiser,
1958:192). Given to a set of forty-five school children, these tests were designed
to measure such aptitudes as visual perception, para,gra.pl; Ac;omprehension, word
comprehension, and problem reasoning (Dillon and Goldstein, 1984:310). The cor-
relations and structure of this data were well documented, giving Kaiser a priori
knowledge as to the structure each rotation criterion needed to recover. Kaiser
found that quartimax tended to create a large general factor, but varimax recovered
the Holzinger and Harman factor pattern fairly well. However, he noted a bias in the
varimax loadings in which all loadings of the factors with the larger variance contribu-

tions were larger than the loadings for the smaller factors (Kaiser, 1958:192). Recall
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from the previous section on the factor analytic approach that variance contribution

of a factor is explained by that factor’s associated eigenvalue. Kaiser attributed the .

observed bias to the fact that the varimax criterion was a fourth—pow)er function.

He reasoned that each variable in the unrotated factor pattern is weighted by its

communality, and that in a fourth-power funétion, a variable with a communality of

0.6, for example, would be influenced by the rotation criterion four times as much as
a variable with a communality of 0.3 (Kaiser, 1958:193). As discussed, the commu-

nality of a variable is the sum squared factor loadings for that variable. Assuming a

one factor model, a variable with a communality of 0.6 would have a corresponding

factor loading of 0.77. Similarly the communality 0.3 has a corresponding factor

loading of 0.54. When we take the fourth power of the factor loadings, the value

resulting from the larger loading is four times that oi the smaller loading, or .35

versus .085.

To compensate for this bias, Kaiser normalized the extracted factors to reduce
the relative influence of each test during the rotation. This consisted of dividing
each variable’s loading by the square root of its communality. After rotation, these

weighting factors are removed (Kaiser, 1958:193). From thi- point Kaiser called the

weighted version of the varimax criterion a normal varimax, and the original version

subsequently became known as raw varimax. The formulation for normal varimax is

ma:ch:; [ZZ“;(A;,. ) — ——(:?=FIEA;1)Z)] | - (213)

where

Aj; is equal to );; weighted by the communality of variable X;,
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~ Kaiser confessed to having no rational Ba‘sis for choosing this weighting scheme,
and admitted making a numerical-intuitivé selection. Indeed, the normal varimax
criterion did recover the Holzinger and Harman structure without the disturbing
bias found in the raw varimax solutions. One side effect of the normal varimax
criterion, however, was that it reduced the divergence of the eigenvalues. We contend
that significant alteration of eigenvalues removes important information regarding
the significance of tke factors and thus the variance explained by the factors. For
this reason, eigenvalue recovery for the Holzinger and Harman data should have
been included as a measure of effectiveness when the normal varimax criterion was

evaluated.

2.11 Monte Carlo Studies

The properties of many models and computational algori'thms have become
fairly well understood as a result of Monte Carlo studies. A Monte Carlo study

is a class of study that employs random variatzs to solve statistical problems that

" are insensitive to the passage of time. These statistical problerr;sr are ﬁéﬁally not

analytically tractable (Law and Keltou, 1991:113-114).

2.11.1 MacCallum Study.  In 1977 MacCallum conducted a Monte Carlo
study to determine the the ability of ATSCAL, a computerized algorithm, to re-
cover true structure inherert in simulated proximity measures (MacCalium, 1977).
ALSCAL attempts to identify separate homogeneous subgroups of indiﬁduals within
a sample, then represent each subgroup by a real or hypothetical individual. The so-
lution is intended to provide information about stimulus relationships characterizing

different subgroups. In their study they generated, for a éample of individuals, a set
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of simulated proximity values with a known structure. After uhalyziug these values
with the ALSCAL procedure they measured the degree to which ALSCAL was able

to recover the inherent structure. The number of stimuli, the number of individuals,

the dimensionality, and the level of random error were all varied. In addition to

structure, they also measured ALSCAL's ability to recover stimulus dimension and
individual stimulus weights. One interesting discovery was that over the range of

their study, the number of individuals had no influence on the other measures of

recovery.

2.11.2 CUff and Pennell Study. In this study Cliff and Pennell used a

Monte Carlo approach to determine if certain variables produced systematic effects

- on the sampling variabilityv of individual factér loadings (Cliff and Pennell, 1967).

They believed a researcher’s greatest concern to be whether or not to expect a
radically different structure for the same variables when obtaining another sample
from the same population and whether a given loading was statistically significant.
In this effort they contrived two experimental factor matrices and multiplied each
by its transpose to produce a correlation matrix. The contrived factor matrices
were created with four different factor strengths, four different cori;munalities, and
four different loading sizes. In turn, each correlation matrix was used to produce

fifty sample factor matrices which were then rotated ,using a least squares fit, to the

—population values. After rotation, Cliff and Pennell measured the standard deviation -

of the sample loadings to determine their variability in light of the independent
parameters. They observed no consistent relation between sample size or loading size
and factor loading stability. Cliff and Pennell did discover that greater communalities
led to greater factor loading stability.

2.11.8 Pennell Study.  Pennell again undertook a Monte Carlo approach in
1968 to further explore the dependence of factor loading sampling error on sample

size and the communality of the variable on which the loading occurs (Pennell, 1968).
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In this study, Pennell calculated the sample factor matfices' using a method slightly
different from that of his work with Cliff . Instead of contriving the experimental
factor matrices, Pennell generated them randomly. He then created variables with
different communalities and inserted them into randomly generated factor matrices. .
‘His work found that increasing communality or sample size resulted in decre.;ased _
variability in individual loadings. For near zero loadings, sample size had the largest _

influence.

2.11.4 Tucker, Koopman and Linn Study.  This study used a Monte Carlo
procedure to study the effectiveness of factor analytic methods using simulated cor-
relation matrices that were more similar to real data correlation matrices than t ose
_ coxhputed directly from factor patterns. In this approach, Tucker sfarted with a ‘ac-
tor pattern that he called the formal model. He then confounded his formal n:odel
with the addition of numérous random influence factors and error terms to arrive at
a pattern he considered closer to real world. This formal model was then mult:plied
by its transpose to yield a correlation matrix which was then factor analyzed to
yield a factor loading matrix. This matrix was known as the sirﬁulation model. The .
simulated correlation matrices were designed to exhibit different numbers of factors
(dimensionality) and different proportions of variance (eigenvalues) expiained by the
factors. When the simulation model was compared to the formal model,ilarge differ-
ences in the quality of results were noted with fewer factors and larger pruportions

of factor variance.

2.11.5 Bauer Study. Bauer’s Monte Carlo study was initiated to character-
ize the properties of different dirensionality techniques (Bauer, 1981). He addresses
the bias effect of sample size, number of variables, number of factors, and struc-
ture complexity on the Kaiser and Catell Scree tests for dimensionality. Bauer also
generates sample factor loading matrices by factor analyzing and rotating correla-

tion matrices computed from the product of a contrived factor loading matrix and
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its transpose. He determines the effectiveness of each dimensionality procedure by
calculating the mean square error between every contrived factor loading pattern
and its associated simulated matrix. His work demonstrated that mean square error

could be predicted with fair accuracy.

2.11.6 Summary. This chapter examined the devélopment and evolution of

factor analysis as a multivariate analysis tool. This included discussion of the com-
" mon factor analytic model and several rotation techniques for simplifying structure.
Pafticular‘a.ttention was paid to the problems of subjectivity and proliferation of

factor rotation criteria. We also reviewed many efforts to understand the properties

of different factor analysis techniques and to identify influential effects. A Monte

,Carlo approach was central to nearly all of these'studies. The reader should note

that there was no evidence of this type of study being conducted to compare and
evaluate rotation criterion. True, Kaiser and others did some limited comparison
of the structures returned by the quartimax, raw varimax and normal varimax cri-

| térion, but these were extremely narrow in scope. Recall that Kaiser admits to no

rational basis for selecting his method of normalizing factor loadings. In addition, he -

comparé his new criterion to raw varimax against one type of factor pattern. Re-
member also that his normal criterion tends to pull the eigenva;lues closer together,

dilutingr information cbfxicerning relative factor strengths and significance. Overall,

Kaiser’s work raises some interesting questions: : SR
e How well does the normal varimax perform over a wide range of sample size,

structure complexity, variable communality and factor loading?

¢ In addition to recovering the known structure of an experimental factor pattern,
how effective is normal varimax in terms of returning variable loadings and
eigenvalues? '

e With what types of data will normal varimax not outperform raw varimax?

e Are there circumstances where neither rotation criterion is desirable?
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These questions will be addressed throughout the course of this effort.
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IIl. Methodology

Chapter three presents the methodology for assessing the accuracy and associ-

~ ated properties of the raw and normal criterion for varimax rotation. This method-

ology is deé{igned to investigate the impact of sample size, uniqueness and structure
compleki_iy on accuracy. The first section covers experimental design and rationale,
followed by a description of the data generation techniques. Section 3 proposes pre-

dictors and measures of effectiveness. The chapter concludes with a discussion of

“the analysis conducted to exploré the relationship between the suggested measures

of effectiveness and behavior descriptors.

3.1 E’zpe;‘ihental Design

Recall from chapter 2 that Kaiser based his normal varimax rotation crite-
rion on a weighting scheme that enabled him to restore the structure underlying
Holtzinger and Harman’s data from twenty-four psychological tests. It must be
reemphasized that his validation efforts for this weighted varimax were limited to
that structure only. Table 3.1 includes the factor loading matrix for ﬁolzinger and

Harmon'’s tests and an additional matrix designed to show the pattern structure.

This matrix was geperated by Holtzinger and Harman through subjective rotation

" criterion and is accepted as the true structure for the tests. The twenty-four psycho-

logical tests were combined to measure five separate a.pﬂtudes among grade school
children. Five underlying factors are clearly evident in the structure pattern ma-
trix. Kaiser considered this, or any structure with the variables loaded roughly
equal on the factors, a complev structure. Alternately, he suggests that a structure
with the all variables loaded on one factor to be the most simple possible structure.
This would agree with Thurstone’s conditions for simple structure outlined in the
previous chapter. In light of the information concerning Kaiser’s normal varimax

development and validation, we thought it prudent to investigate the sensitivity of
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Table 3.1. Factor Loadings And Pattern Structure For Holtzinger and Harman’s
Twenty-Four Psychological Tests

Al h i i N . A Lh i fs fs
X {.07T .15 .41 .13 X | X
X;|.10 .12 .53 .13 ‘ X3 X

X .15 .18 .53 12| X4 X
Xs |75 .15 .26 .15 Xs | X

Xe 72 05 . 28 25 ' o ' Xs X

X; |.81 08 .27 .11 X7 | X

Xs'| .54 .26 .38 .14 Xs | X

Xo |.7T6 .-04 .29 .30 Xe | X

Xl .28 .66 .-19 .14 X0 X

_Xu 27 .61 -04 .29 ' Xu X

X | I3 72 09 .03 X2 X

X1zl .24 .63 .31 .02 _ X3 X

X |23 19 .02 48| . X4 X
X5 .11 .14 .08 .50 Xis X
X .05 22 .34 .45 : Xie X
X17 A5 .24 .-03 .62 Xu ‘ X
Xis) 01 39 .20 .52 Xis X
X |12 22 .18 .39 X1o X
Xl 31 .18 .46 .29 X2 - X
Xn!l .17 46 33 .24 : Xa X

X | 31 12 .40 40 _ X2 X
Xl .31 29 .54 25 | X3 X
X24 39 .46 .14 .31 X24 X

Kaiser’s criterion against structures of varying vcomplexity. As seen in Tables 3.2,
3.3 and 3.4, we began the research effort by constructing nine initial 16 variable by

4 factor experimental factor patterns.

Observe the three different levels of structure complexity for these experimental

factor patterns:

e Level 1: Variables loaded equally on all four factors

e Level 2: Variables predominantly loaded on the first two factors
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Table 3.2. Initial Level 1 Theoretical Factor Pa.ttemé
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Table 3.4. Initial Level 3 Theoretical Factor Patterns

Pattern 7 Pattern 8 " Pattern 9
9 0 0 0 g8 0 0 0 7 0 G 0
9 0 0 O 8 0 0 0 7 0 0 0
9 0 0 O 8 0 0 0 70 0 0
9 0 0 O 8 0 0 0} 1.7 0 0 0
9 0 0 O 8 0 0 O 7 0 0 0
9 0 0 0 g 0 0 0 a0 0 0
9 0 0 0 g 0 0 0 70 0 0
9 0 0 0 S 0 0 0 a0 0 0
9 0 0 0 8 0 0 0 {70 0 0
9 0 0 0 +8 0 0 0 a0 0 0
9 0 0 0 8 0 0 O 17 0 0 0
0 9 0 O 0 8 0 0} 0 .7 0 0
0 9 0 O 0 8 0 O 0 .70 0
0 0 9 0 0 0 8 0 0 0 .70
0o 0 9 0 0 0 8 0 0 0 .70
0 0 0 9|A?=81{0 0 0 B8|A?=64{0 0 0 .7|h}=49

e Level 3: Variables predominantly loaded on the first factor

The eigenvalues indicate the total variance explained by each factor. One can readily
see that our different levels of structure complexity would affect the divergence of the
eigenvalues, with the simplest structure producing the largest divergexice. The three

levels of structure complexity were chosen to investigate the impact of structure

complexity as manifested in eigenvalue divergence. In order to quantify Kaisers’s

subjective description of structure complexity, we proposed using the ratio of highest

to lowest eigenvalue of each experimental factor pattern. We will refer to this value
as the stability ratio. Since eigenvalues provide important information on the validity
and strength of a factor, varying stability ra.tios‘ ill hopefully ptovide insight as to
each criterion’s ability to restore this information upon factor pattern rotation. It was
noted in chapter 2 that Kaiser did not incorporate eigenvalue recovery as a measure
of effectiveness for normal varirha.x rotation. For that matter, varimax seemed to
have a leveling effect on eigenvalue divergence. Our range of structure complexity

provides a range of eigenvalue dispersion for assessing rotational properties. Notice
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at each level of structure complexity, the initial nine experimental factor patterns

- exhibit three different average communalities of .81, .64, and .49. This will provide

insight into the influence of structure complexity, communality and the interaction

of both.

As shown in Tables 3.5 thru 3.10, each of the initial nine éxperimental patterns

were then perturbed across both the factors and the variabies.

Table 3;5. Level 1 Perturbed Across.Factors .

Pattern 10 Pattern 11 Pattern 12
9 0 0 0 3 0 0 0 7 0 0 0
9 0 0 O 8 0 0 0 70 0 0
9 0 0 0 8 0 0 0 700 0
9 0 0 O 8 0 0 O 70 0 0
0 8 0 0 0 .70 0 0 6 0 0
c 8 0 0 0 .70 0 0 6 0 0
0 8 0 0 (o 70 o0 0 6 0 0
0 8 0 O 0 700 0 6 0 0
0 0 .70 0 0 6 0 D 0 .5 0
0 0 .7 0 0 0 6 0 0 0 5 0
0 0 .7 0 0 0 6 0 0 0 5 0
0 0 .7 0 0 0 6 0 0 0 5 0
0 0 0 6]/ 0005 0 0 0 4
0 0 0 .6 0 0 0 .5 0 0 0 4
0 0 0 .6 0 0 0 .5 0 0 0 4
0 0 0 .6 0 0 0 5 0 0 0 4

Note when perturbing across the factors, each variable within a commeon factor ex-
hibits the same communality. Perturbing across the variables assigns a different
communality to each variable within a common factor. In terms of the three sub-
jective levels of structure complexity defined earlier in this section, the structural
complexity is maintained to allow the researcher to assess how eigenvalue dispersion
due to both variable communality and étructure complexity drive rotation accuracy.
For the purposes of this effort, rotational accuracy is the ability of a rotation crite-
rion to recover the loadings, eigenvalues and structure pattern of each experimental

factor pattern. Measures of effectiveness were suggested to capture these properties
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Table 3.6. Level 2 Perturbed Across Factors
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Table 3.7. Level 3 Perturbed Across Factors
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Table 3.8. Level 1 Perturbed AcrossAFa,ctors And Variables

CoCcoococococoococodHmMm
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Table 3.9. Level 2 Perturbed Across Factors And Variables
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Table 3.10. Level 3 Perturbed Across Factors And Variables

| Pattern 25 ‘ Pattern 26 Pattern 27
9 0 0 0] 8 0 0 0 70 0 04
8 0 0 0 7 0 0 0 6 0 0 O
a7 0 0 0O 6 0 0 O S5 0 0 0
6 0 0 O S 0 0 0 4 0 0 0

45 0 0 0 4 0 0 O 30 0 0
4 0 0 O 30 0 0 3 0 0 0
3 0 0 0 3 0 0 0 3 0 0 0
30 0 0 3 0 0 0 30 0 0
30 0 0 3 0 0 0 30 0 0
3 0 0 0 3 0 0 0 30 0 0
30 0 0 3 0 0 O 30 0 0
0 8 0 O 0 .70 0 0 6 0 O
6 .7 0 0 0 6 0 O 0 5 0 O
6 0 .70 0 0 6 0 0 0 5 0
0 0 6 O 0 0 5 0 0 0 4 0

(0 0 0 .6] 0 0 0 4 0 0 0 3

and will be defined in a later section. Further, the mean and standard deviation of
these measures of effectiveness will be recorded over 100 experiments for each of the

thirty-six populations coi‘résponding to the experimental factor patterns.

Finally, the set of experimental patterns was further expanded by randomly

adding nuisance factors, ranging betw‘/een‘.64 and .01, to variables of the perturbed

factor patterns. This has the effect of inflating the communalities of the correspond-

ing variables. These additional experifnenta.l factor patterns are shown in Tables 3.11

thru 3.13.

Each theoretical factor pattern was analyzed over sample sizes of 17, 32, 160
and 500. Rather than determine the improvement in factor analysis effectiveness as
sample size increased, we elected to explore the minimum threshold needed to facil-
itate reasonably accurate factor analysis. The flow diagram in ﬁgure 3.1 illustrates
a general overview of the approach utilized in the analysis of each theoretical factor

pattern. The following section will address each step of this approach in more detail.




Table 3.11. Level 1 Perturbed And Nuisance Loadings
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Table 3.12. Level 2 Perturbed And Nuisance Loadings
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Table 3.13. Level 2 Perturbed And Nuisance Loédings

Pattern 34 Pattern 35 Pattern 36
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3.2 Data Generation
“This section begins by outlining the procedure for deriving a covariance matrix
from each of the third-six theoretical factor patterns. Recall the basic factor-analytic

model introduced in chapter two,

Cxease T ey

where

X is a p x 1 vector of observed responses,
A is a p x ¢ matrix of unknown constants (factor loadings),

J is 8 ¢ x 1 vector of unobservable variables (common factors)

and
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e is a p x 1 vector of unobservable variables (unique factors).

Specifically,

Also recall that the j unique factors consist of the variance of each variable not -

Apt

APQ

explained by any of the common factors. It is generally assumed that the unique

"parts of each variable are uncorrelated. Further,' the unique parts are uncorrelated

with the common parts

These assumptions imply that the covariance matrix of X can be written as

where

g

(v, o
0 ¥,

0 o
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¥ is as previously defined,

A is the original experimental factor loadings matrix,

and

'Q,‘l . sz . Qq.q—l 1 i

where ® gives the covariance between the common factors. When it is assumed that

the factors are uncorrelated, we have

o =1, (3.3)

hence

. =AAT 4+ 0, - (3.4)

Thus a population covariance matrix can be derived by multiplying the theoretical
factor pattern by its transpose and adding the diagonal matrix of uniqueness values

for each variable. Since the communality (that part of the variance accounted for by

the common factors) is
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RI=3" 0%, - (3.5)
J

The uniqueness of vacii variabic in « given vndiciical matrix can he calenlated as

& =1-h? | (3.6)

Therefore,

Tee = AAT + [(1 - Z A,?,.)] . (3.7)

The next step in the experimental procedure was to generate N(sample size)
sample vectors of length 16 (number of variables). Since the individual components of
each sample vector are obviously not independent,we generated each random vector
from a joint (multivariate normal) distribution to form a vector of correlated random
normal variates. Each‘cova;riance matrix is positive definite and can be factored into

an upper and lower triangular matrix using Choleski decomposition

z=ccT (3.8)

For a more detailed mathematical explanation of Choleski decomposition, see (Bur-
den and Faires,1989:370). After the covariance matrix was factored, we generated

random multivariate normal deviates
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1987:1144) and RNMVN (IMSL,1987:1033) was written to read a selected covari-

© 1987:656) to return rotated factor patterns for both the raw and normal varimax

- createl a sort routine in our main program to rewrite the common factors of each T

X
Xi=) CiZj,

(3.9) \
i=1 _ : [t
where
t=1,..,p
and
X = (Xi,..X,)T ~ N,(0,). (3.10)
A FORTRAN program (see appendix A) ﬁtilizing routines CHFAC .(IMSL, | /

ance matrix, perform Choleski decomposition and return 100 sets of N(sample size)

1 x 16 multivariate normal deviate vectors. These data sets were then factor an-

alyzed using the SAS (see appendix C) principal components method. SAS was

" used because we experienced prot;lems with the FACTR routine (IMSL, 1987:647)

returning consistent results. The Monte Carlo technique was implemented in our \\\

main FORTRAN program (see appendix D) which used the FROTA routine (IMSL,

criterion. There were also problems with the FROTA routine in that the columns
of the rotated output were not in the correct order with respect to the eigenvalues.

Because of the greater flexibility this routine provided, we decided to use it and

rotatea factor pattern in the correct (largest eigenvalues first) order. Theoretical

facter pattern characterization parameters, rotation measures of effectiveness, and

! atatistics were calculated in this program.
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8.8 Pattern Characterization

Selecting a method that quantifies the fundamental features of a large group
of theoretical patterns over a large range of loading structures and communalities
was a difficult process. For this effort the researcher relied primarily on three such

metrics. They were the

o Stability Ratio
o Complexity index
o Uniqueness index

The stability ratio concept was proposed because it mathematically separated the
theoretical factor patterns into three levels of complexity based- upon eigenvalue
divergence. Patterns where most of the variables load on one factor will display a
very large ratio of highest to smallest eigenvalue, thereby incurring a high stability
ratio. Conversely, theoretical factor patterns with equal variable loading will have a
stability ratio close to 1. Used in this manner, the stability ratio will provide a means
of quantifying Kaiser’s concept of struciure complexity. Since eigenvalue divergence
is a function of the factor pattern columns, we will call this component of structure

complexity the column effect.

Lmu
7 | (3.11)

In addition to eigenvalue divergence, There are several promising methods

for quantifying factor pattern complexity. Bauer explains complexity in terms of

the difficulty for a factorization technique to extract the first factor over the second
(Bauer, 1981:39). In other words, the total variance explained by the first two factors
are so close in value, the extraction algorithm has difficulty discerning between the

two. He proposed a complexity index combining two structure parts that he called
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o Complication due to structure
o Complication due to uniqueness

The first component of the complexity index takes the form

t=1 ‘Z}=z Ei—li(l-‘k*u)’ | | ' (3.12)

This term (structural complexity) suggests that factor patterns with variables loaded

equally on all variables will exhibit large complication due to structure with a weai(
upper bound of 1, while patterns with all variables loaded on one factor Will display
very low complication due to structufe with a lower bound of 0. Inspecting the
fortﬁulation, we can see that this component is a function of ‘the factor pattern rows
and columns. We will call this component of structure complexity the georhetry

effect. The second part of Bauer’s complexity index,

1-37, & o S :
— | (3.13)

is the average uniqueness of the experimental factor pattern. Simply put, the lower

the uniqueness of a given variable the higher the variance (communality) explained

by the common factors. 'With less variance due to uniqueness (error), a rotation
technique has a better éhance of reéovering the representative factor pattern. We
will refer to uniqueness, a function of the rows (variables), as the row effect. In an
effort to isolate these two effects, we will perform separated calculations for these
two parts. A primary objective of this effort will be to determine if any single effect

or interaction of effects can provide accurate prediction of factor pattern behavior.
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8.4 Measures Of Effectiveness

Three primary areas were addressed to explore the accuracy of the two varimax

criteria.

o The ability to recover the experimental factor pattern structure
- The ability to recover the variable loadings for the experimental factor pattern

o The ability to recover the total variance explained by each factor (eigenvalue)

in the experimental factor pattern

 Each observed rotated structure was compared to its associated experimental struc-
ture to determine the number of times our observed pattern loaded a variable on the
same factor as the experimental p.:s.ttern. This was accomplished by assigning a value
of 1 to the most significant factor loé.ding of every variable in each experimental fac-

tor pattern and a zero value to all ofher, loadings. This same binary transformation

was also performed on each rotated sample factor pattern. The experimental struc- -

tures were then compéred to the M=24 permutations of the j=4 factor columns of
its respective rotated solution, scoring the highest number of achieved matches. The

scoring calculation is

maztr[AT A 1)

where
A, is the experimental factor pattern
and

Ap (n=1,...,24) are the permuted rotated factor patterns.

The permutations were performed to ensure the study compared only the best possi-

ble form of each rotation criterion. Additionally, this same procedure was conducted
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‘where

on each extracted unrotated factor pattern to contrast its accuracy to that of the
two varimax rotation criterion

Variable loading recovery was measured by calculating the root mean square
residuals between each rotated variable loading and those of its parent experimental

factor pattern as

'\] 1 B 0 - P @15)

pq is the total number of factor loadings,

A}; are the experimental factor pattern loadings ‘

and

Aj; = are the best permuted factor pattern loadings.

Eigenvalue recovery was measured in a fashion similar to that of the variable
loadings. We calculated the root mean square residuals of the eigenvalues between
each rotated variable loading and its parent experimental factor pattern. This is

calculated as

\J =1 (I;; — L) (3.16)
(3.17)

where
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g is the total number of eigenvalues,

L; are the experimental factor pattern eigenvalues

and

L} are the best permuted factor pattern eigénva.lues.

It must be noted that in each of the residual cA]cula.tions, the rotated factor pattern
was the permuted pattern that produced the highest matchihg score. Again, this was

to ensure that residuals were calculated for the best possible rotated representation.

All measures of effectiveness were averaged over N=100 data sets from thirty-six

different populations corresponding to each experimental factor pattern to establish

a grand mean for all measures of effectiveness.

8.;5 Regression Analysis

Several regression studies will be conducted to determine if rotated pattern
matching score, factor loading error and eigenvalue error can be predicted as func-
tions of sample size, stability, uniqueness and complexity. Each of our measures

of merit were taken as the grand mean of 100 iterations for the different experi-

mental structure-sample size combinations. Two types of regression models wili be

investigated.

1. A linear regression model for predicting measures of effectiveness using a step-
wise procedure. Three formulations of this model will include pattern matching
score, root mean square residual loadings (RMSR), and root mean square resid-
ual eigenvalues (RMSER) as response variables. Each response will be modeled
as a linear function of stability ratio, uniqueness index, complexity index and

all possible multiplicative interaction terms.
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2. A nonlinear model will also be attempted for predicting measures of effective-
ness using a stepwise procedure to fit a Cobb-Douglas function. This will enable
us to capture any nonlinearities greater than first or second order that may

be present in the data. This model will also inclvde three formulations using

pattern matching score, RMSR, and RMSER as response variables. The inde-

pendent variables will include stability ratio, uniqueness index and complexity

index as independent variables.

The genera.l approach for the regréssion analysis will be to first attempt a linear

model of each response variable for the smallest sample size, 17. Our criteria for an

~ acceptable model will be any one that explains 80 % of the variance of the response

variable as indicated by the adjusted r? value. If this model is unacceptable, the
sample sizes will be successively inéreased until the largest, 500, 'ha; been modeled.
If according to our criteﬁon, the model is still unacceptable, we ‘will attempt to fit
a Cobb-Douglas function to the response determined by the smallest sample size.
This procedure wiil also bring in 'la.réer samples until all sample sizes are exhausted

or an acceptable model is obtained.

| 8.6 Factor Analysis

Finally, our é.na.lysis will conclude with preliminary factor ‘vb.na.lysis on three

data sets consisting‘\of the following groups of variables.

1. The set of variables measuring matching scores for the raw and normal varimax

factor patterns, and the unrotated factor pattern.

2. The set of variables measﬁring RMSR for the raw varimax, normal varimax

and unrotated factor patterns.

3. The set of variables measuring RMSER for the raw varimax, normal varimax

and unrotated factor patterns.
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In addition to generating factor patterns, we will also examine some two-factor plots.
This analysis will a visual perspective of the interrelationship of each experimental
factor pattern. In order to remain cohsistent, sample size correspoﬁding to the data
set yielding the best regression iriodel for each experimental factor pattern will be

the one factor analyzed.

3.7 Summary

- This concludes the methodology discussion for this research effort. This chap-
ter covered datz generation, the Monte Carlo approach, independent predictor cal-
culations and response measures of effectiveness calculations. The next chapter will

detail the results of this approach. -
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‘I V. Results and Conclusions

4.1 Monte Carlo Approach

The Monte Carlo method was applied to assess the accuracy and associated
properties of the raw and normal varimax criterion for rotation in factor analysis.

In all, three different levels of structure complexity were used:

o Level 1: Variables loaded equally on all four factors
e level 2: Variables predominantly loaded on the first two factors
° levél 3: Variables predominantly loaded on the first factor

Each level of structure complexity was investigated over a range of average com-
munality and nuisance loadings. As defined in the previous chapter, several factor
pattern descriptor variables and measures of effectiveness were proposed to predict

rotation criterion performance. Recall that we are defining factor pattern complexity

in terms of row, column and geometry effects and that these effects will be estimated -

as a function of the predictors. Qur set of experimental factor patterns were con-
trived to display a range of each effect. In Figures 4.1, 4.2 and 4.3 we have sorted

the set of experimental factor patterns in ascending order of stability ratio, ﬁnique—

_ __ness index and complexity index to illustrate the experimental range of each effect.,

Baged on the analysis of these metrics, several conclusions have been drawn.

4.2 | Pattern Matching

Perhaps one of the most important measures of effectiveness regarding any ro-
tation criterion is the ébility to restore the true underlying factor pattern structure.

The observed structures for the unrotated and both rotated (raw and normal vari-

max) factor patterns were compared to each of their associated experimental factor -

patterns to determine a pattern matching score. That score is the number of times

the experimental and observed patterns both load a variable on the same factor.
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The patfem matching score was the highest matching total recorded for each of the
twenty-four permutations of the four columns in each observed factor pattern. This

ensures consistent comparison of the best possible observed factor ﬂattern structure.

- 4.2.1 Ezploratory Scatter Plots. Figures 4.4, 4.5 and 4.6 show initial

scatter plots of the matching scores against each complexity effect.

We can clearly see from Figure 4.5 that matching score as a function of uniqueness

displays the most conclusive relationship of any pfedicfor variable. Upon closer in-

spection, their appears to be four different processes taking place. First, there is

' a general trend toward lower matching scores for the observed unrotated and ro-

tated factor patterns as the average uniquenesﬁ of the experimental factor pattern
increases. Second, the scatter plot converges with increased uniqueness, indicat-
ing no difference between unrotated and rotated matching scores at high levels of
uniqueness. Furthermore, we can see that the raw and normal varimax rotation

criterion achieve the same matching score at all levels of uniqueness. Finally, Fig-
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" Figure 4.6. Complexity Index vs Pattern Matching Score For Sample Size N =17

ure 4.5 shows unrotated factor patterns of the same uniqueness exhibiting distinctly
different matching scores. The significance of this difference decreases as uniqueness
increases. To understand what is causing this response, we must refer to the un-
rotated matching scores ranked according to uniqueness index shown in Table 4.1.
This Table shows ué that at any given uniqueness, 0.190 for example, higher stabil-

ity ratios produce a higher matching scores for an unrotated factor pattern. While

__the scatter plots of stability ratio and complexity index do not show any conclusive e

relationships, they do indicate that there is no difference between the two varimax

criterion in response to column or geometry effects

4.2.2 Regression Analysis. A regression analysis was then performed on
the observed matching score for the unrotated and both rotated factor patterns to
better understand the influence of column, row and geometry effects as measured by
the predictor variables. In addition, a successful regression model will determine if

pattern matching scores can be predicted. In this analysis, pattern matching score
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Table 4.1. Unrotated Matching Score As A Function Of Uniqueness Index

Structure | Stability { Uniqueness | Score
1 1.000 0.190 10.1
13 3.500 0.190 13.7
25 11.000 0.190 14.9
26 24.750 0.279 14.7
14 7.875 0.339 13.8
5 1.000 0.360 10.0
17 3.500 10.360 12.8
29 11.000 |1 0.360 14.5
2 2.250 0.425 10.5
30 28.160 0.438 14.3
18 14.000 0.502 12.8
9 1.000 0.510 9.6
21 3.500 0.510 11.6

. 33 11.000 0.510 13.5
4 3.211 0.523 8.8
16 3.097 0.561 9.7
6 2.560 0.565 9.6
34 33.687 0.577 13.1
28 5.108 0.581 9.2
3 2.674 0.615 9.3

15 4.590 0.615 10.0

22 | 10719 0.622 11.6
8 2.281 0.629 8.4
27 8.778 0.656 9.2
20 4.580 0.668 8.9
10 3.062 0.685 8.8
32 5.060 0.686 8.6
7 2.949 0.722 8.6
19 8.320 0.732 9.1
31 15.250 0.746 8.9
36 12.118 0.766 8.0
24 5.667 0.771 8.0
12 2.000 0.776 8.3
11 2.520 0.799 8.1
23 6.120 0.804 8.4
35 21.000 0.812 8.2
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was pakeh as the grand mean of 100 sample pattern matching scores obtained from
each experimental structure-sample size combination. Using .80 as the target ad-
justed R? value, we first performed a linear regression on the smallest sample size
combination (N=17) and incremented the sample sizes until reaching our target. If
the largest sample size-combinativon (N=>500) failed to reach the target, the proce-
dure was repeated with a Cobb-Dougl;s type functjbn. In the case of factor pattern

matching scores, a satisfactory linear regression model for each observed faztor pat-

- tern was obtained with the smallest sample size. The independent variables in each

modeiA consisted of the stability ratio, uniqueness index, complexity index, all two
variable interaction terms and the three variable interaction term. Table 4.2 summa-
rizes the adjusted R?, mean square error, entering variable coefficients and variable

significance for each model.

According to the adjusted R? and mean square errors, the three models appear
to predict matching scores reasonably well. The residual plots'(Appendix E) also
indicate a high degree of model aptness. Note in Table 4.1 that Unigeness? is the

second most significant independent variable in each model. Howevér, in the model

for unrotated matches, Uniqueness® is much less significant than in the models for

our raw and normal varimax criterion. Further, the significance of this particular

independent variable is nearly equal for the two rotation criterion. In fact, the

raw and normal varimax models are very similar in terms of main and two-factor

interaction effects. Also note that Stability is nearly as significant as Uniqueness?
in the unrotated model but very small relative to U niqueness? in either rotated
model. The coefficients of Uniqueness? and Stability in each model also indicate that
matching scores for rotated factor patterns are influenced by row effects (uniqueness)
to a greater extent than unrotated factor patterns. Conversely, matching scores for
unrotated factor patterns are influenced by column effects (stability) much more
than the rotated factor patterns. Also shown are very large negative coefficients for

complezity in all three models. Evidently complexity in terms of geometry has a large
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Table 4.2. Linear Regression Models For Factor Pattern Matching Score

Unrotated

Normal

Variables Coefficients  t-value
Const 11.707 26.96
Unig? -7.230 -6.70

 Stab 0.408 5.33
Comp -65.006 - -3.05
Stab? -0.005 -2.84

ST xUn -0.266 -2.57

R? =88 MSE =0.614
Const 16.644 65.63

. Unig? -13.014 2217
Comp 251750  -4.61
Stab. -0.032 -2.34
Comp® 5639.798 2.32

R* =95 MSE =0.396
Const 16.675 65.32
Unig® -13.190 -22.43

" Comp? 9619.153  3.17
Comp -237.73 -3.09
Sta{: -0.032 -2.37
St*UnxCo 153.611 2.29
St*Cp -115.069  -2.21

RF=.95 | MSE =0.386




influence on factor pattern recovery. Since gcometry can be considered a combination

of the row and column effects that have already been found to be significant in each
* model, this makes intuitive sense. It is interesting that stability and uniqueness are
present as an interaction term in the unrotated model. The results of this régression-
analysis seems to support our initial conclusions based upon the exploratory scatter

~ plots.

4.2.83 Factor Analysis. A factor analysis was performed using the un-

rotated, raw, and normal factor scores as our observed variables. Three variables
limited our dimensionality to three possible latent factors. Factor analysis was ac-
complished to determine if our initial conclusions about the relationship between
pattern recovery and the three complexityw effects were correct. If these conclusions

are in error, factor analysis can help identify the presence of other effects not cap-

tured by our predictor variables. After extracting the common factors, the factor:

pattern was rotated using the normal varimax criterion. This rotated factor pattern

is illustrated in Table 4.3.

Table 4.3. Rotated Factor Pattern For Matching Score

h fa fa
Unrotated | .422 | .906 | .000

Raw 906 | .422 | -.016
Normal | .906 | .422 | .016

| The structure indicated by the bold faced factor loadings shows the observed match-
ing scores for the raw and normal varimax criterion to be strongly influenced by
the same underlying process. - Observed matching scores for the unrotated factor
pattern are influenced just as strongly by a different, independent process. It would
be reasonable to infer that uniqueness is the underlying process associated with the
rotated matching scores, while stability ra..tio is a similar underlying process for Un-

rotated matching scores. The two- factor plot (Appendix F) graphically illustrates
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this relationship. The cluster comprising group I are characterized by high stability |

ratios, while that of group II are characterized by very low average uniqueness.

4.2.4 Conclusions. Based upon the preceding analysis we can conclude
That there is no difference between the ability of the raw or normal varimax rotation
criterion to restore a known factor pattern (of the type we sampled from). Also, the
difference between rotated and unrotated pattérn recovery is negligible at high levels |
of a\;era.ge uniqueness in the patterns. Finally, we saw that stability ratio heavily
influenced the unrotated factor pattern, while average uniqueness influenced the
rotated factor pé.tterns. In all cases, the number of pattern matches were predictable

with a linear regression model at a very small sé.mple size.

4.3 Factor Loading Rcsiduals

In addition to pattern matching, our investigation also included each rotation
criterion’s ability to recover the factor loading qf each experimental factor pattern.
To address this perfoﬁna.nce area, we proposed using the root mean square residuals
(RMSR) of the observed factor loadings as a measure of merit. RMSR was calculated

for the permuted factor pattern that yielded the best pattern matching score.

4.8.1 'Ezploratory Scatter Plots. Figures 4.7, 4.8 and 4.9 show initial
scatter plots for RMSR agaiust each complexity effect. Unfortunately, none of these
scatter plots indicate any conclusive relationship between factor loading reco?ery
and the row, column or geometry effects. We can see that, regardless of the effect,
there is very little difference between residuals of the observed factor patterns for
the unrotated, raw varimax or normal varimax. The scatter plots for stability and
uniqueness show a very slight trend in which the residuals decrease with increasfng
complexity in terms of column and row effects respectively. Intuitively, one would

expect to see the opposite trend. A regression analysis was conducted to see if
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we could gain further insight into the underlying process affecting observed factor

pattern loading residuals.

RMSR vs Stability Ratio
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vFigure 4.7. . Stability Ratio vs Root Mean Square Loading Residuals For Small Sam-
ple Size N=17 '

4.8.2 Regression Analysis. As in the rcgression analysis conducted for
pattern matching scores, RMSR was taken as the grand mean of 100 RMSR samples
obtained from each experimental structure-sample size coﬁ;bina.tion. Again using .80
a,s.the target adjusted R? vé.lue, we first performed a linear _régression on the sma.liest
sample size combination and incremented the sample sizes until reaching the target
value. If the largest sample size combination failed to reach the target, the procedure
was re.peated with a Cobb-Douglas type function. In the case of unrotated factor
pattern RMSR, a satisfactory linear regression model was obtained with the smallest
sample size. As for RMSR associated with the rotated criterion, we were unable to
achieve the desired adjusted R? with the smallest sample size cémbina.tion, and saw
no improvement at any of the larger sample sizes. When attempting to fit a Cobb-

Douglas function, we observed adjusted R? values lower than had been achieved with
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' the linear model. Table 4.4 summarizes the adjusted R?, mean square error, entering
variable coefficients and variable significance for each linear model. The independent
variables in each model consisted of the stability ratio, uniqueness index, complexity

index, all two variabie interaction terms and the three variable interaction term.

Table 4.4. Linear Regression Models For Root Mean Square Residuals

Variables |- Coefficients  t-value
Unrotated | Const | 0.552 35.64
Uniq -0.238 . -8.77
Stab -0.006 -4.71
Comp -65.006 -3.05
1 ST *xUn 0.006 2.66
R*=.81 | MSE =0.0003 .
Raw Const 0.468 30.57
| Unig -0.118 -4.40
- Stadb -0.004 -3.31
ST *Un 0.005 -2.20
. ‘ R?* =54 | MSE =0.0003
Normal | Const 0.448 42.19
Uniq -0.087 -4.93
Stab? -0.0001 -4.02
R* =53 | MSE =0.0003

According to the adjusted R? and mean square errors, the unrotated modei
appears to predict RMSR very well. The rotated models show only a fair level
 of RMSR prediction. Even so, the residual plots (Appendix G) indicate a high
degree of aptness for all three models. Note in Table 4.4 that a Unigeness term
is\again the second most significant independent va.riabie in each model. However,
in \the model for unrotated matches, Unigqueness is twice as significant as in the
- models for our raw and normal varimax criterion. Perhaps this variable has a greater
inflyence on the unrotated residuals, hence providing a better fit with the linear
model. The significance of the Stability variable is approximately ei;ua.l in each
model. The coefficients of Uniqueness terms in each model indicate residuals for

rotated factor patterns are influenced by row effects (uniqueness) to a greater extent
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Table 4.5. Rotated Factor Pattern For Root Mean Square Residuals

f f2 fs
Unrotated | .497 | .866 | .033

Raw .8685 | .496 | -.073
Normal | .836 1| .518 | .179

than unrotated factor patterns. This difference is only relative, since the influence
in any specific model is very small. According to the coefficients for the stability
terms, influence due to coluran effects (stability) is also very small. In every model,
the coefficients of both variables have negative values. This supports our initial
scatter plot observations where we detected a slight reduction in all residuals as

uniqueness and stability ‘ucreased.

4.8.8 Factor Analysis. A factor analysis was performed using the unro-
_tated, raw and normal ioading residuals as our observed variables. Three variables
limited our dimensionality to three possible latent factors. Since the results of the
scatter plots and regression analysis were largely inconclusive, a factor analysis was
done to perhaps clarify the relationship underlying factor loading generation. Af-
ter extracting the common factors, the factor pattern was rotated using the normal

varimax criterion. This rotated factor pattern is illustrated in Table 4.5.

~— -~ Thestructure indicated by the bold faced factor loadings shows the observed

loading residuals for the raw and normal varimax criterion to be strongly influenced
by the same underlying process'. Observed residuals for the unrotated factor pattern
are influenced just as strongly by a different, ihdependent process. Recall that this
is the same structure pattern identified in the factor analysis for factor pa.ttérn
matching score. Notice, howéver, the significance of these loadings has decreased. A
reduction in the influence of column and row effects has thus far been observed when
comparing the exploratory plots and regression models of the loading residuals to

those of the matching scores. As in the factor analysis for factor pattern matching
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score, it would be reasonable to infer that uniqueness is still the undérlying process
associated with the loading residuals of our rotated 'c‘riterion, and stability ratio is
again the underlying process for the unrotated loading residuals. It is interesting that
while loadings on the first two factors decréased, we saw a third factor begirning
to emerge. This may be in response to the geometry effect as measured by the
complexity index. In retrospect, a broader range of experimental factor pattern
compleiity index might have a.x_iswered this question. The corfesponding factor plot
(Appendix H). The absenée of any noticeable clustering of factor scores would seem
to indicate a complex relationship underlying thc ability of unrotated and rotated

varimax factor patterns to reéto_re known experimental factor loadings

4.94 Conclusions. Althbugh the preceding analysis was largely inconclu-
si\"e ,we can still make some broad'generalizations.. -First, according to our RMSR
criterion there is little difference between the ability .f .the unrotated or either ro-
tated factor pattern to restore the factor loadings of the experimental factor patterns.
Second, all observed factor pattern loadings were influenced to a small extent by ex-
perimental factor pattern stability and uniqueness. Fﬁrther, the uniqueness influence
was opposite of what we expected. While there appeared to be an additional effect
present, we were unable to conclude whether thiz was the effect due to geometry. |
~ Finally, a linear model can predict the loading residuals for the unrotated factor .

 pattern fairly well, but only moderately so for the rotated factor patterns. |

44 sz'g'cm)aluc Residuals

The final performance area explored in this study was the ability of the ob-
served factor patterns to restore the eigenvalues of each experimental factor pattern.
Recall from chaptei 2, Kaiser’s normal varimax rotation criterion had a leveling ef-
fect on the eigenvalues corresponding to the rotated factcr pattern in that it reduced
their divergence. This area was addressed similar to the factor pattern loading issue

by using the root mean square eigenvalue residuals (RMSER) of the observed factor
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loadings as a measure of merit. In the interest « : consistency, RMSEF. was calculated

for the same permuted factor pattern that yielded the best pattern matching score.

4.4.1 Ezploratory Scatter Plots. Figﬁres 4.10, 4.11 and 4.12 show initial
" scatter plots for RMSER against the column row and geometry complexity effects.
Obviously, the relationship between eigenvalue recovery and our chosen complexity
effects appe:;).rs to be very complicated. As illustrated in the scatter plots, there is
no readily apparent, consistent residual response with respect to experimental factor
pattern stability, uniqueness or complexity. it is also tempting to concludzin general
that there is no substantial difference hetween the ability of the unrotated, or either
rotated factor patterns to recover the eigenvalues of the experimental factor patterns.

However, the apparent complexity of the relationship between our measured effects

and eigenvalue residuals forces us to withhold this conclusion. A regreésion analysis |

may simplify this relationship.
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Figure 4.10. Stability Ratio vs Root Mean Square Eigenvalue Residuals Sample
Size N=17 '
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4.4.2 .Regression Analysis.  Consistent with all previous regression analysis,
RMSER was taken as the grand mean of 100 sample RMSER samples obtained from
each experimental structure-sample size combination. Still using .80 as the target

adjusted R? value, we first performed a linear regression on the smallest sample size

combination and incremented the sample sizes until reaching the target value. If -

the largest sé.mple. size combination failed to reach the target, the procedure was
repeated with a Cobb-Douglas type function. For the unrotated and both rotated
facfor patterns, we were able to satisfactorily model RMSER with a linear regression
model uSing the smallest structure-sample size combinations. Table 4.6 summarizes
the adjusted R?, mean square error, entering variable 'coefﬁcients‘a.nd variable sig-
pificance for each linear model. The independent variables in each m¢ del again
consisted of the stability ratio, uniqueness index, complexity index, all two variable
Table 4.6. Linear Regression Models For Root Mean Square Eigenvalue iResidua,ls

interaction terms and the three variable interaction term.

Variables | Coefficients  t-value ‘
Unrotated Stab 0.344 8.10
StxUn -0.352 -6.26
Constant | 1.515 4.28
Stab? -0.002 -2.62
Unique -1.351 -2.23
R* =88 | MSE =0.1859
Raw StxUn -0.415 -10.59
Stab -0.364 9.26
Constant 0.737 4.26
Stab? -0.002 -2.01
R* =84 | MSFE =0.2054
Raw Stab -0.300 13.36
StxUn -0.407 -10.33
Constant 0.916 8.34
R* =84 | MSE =0.2092

We can readily see from the values for adjusted R? and mean square error that

all models explain most of the variance of the eigenvalue residuals. The corresponding




residual plots (Appendix I) indicate we have an apt model. After accounting for

the relative small scale of the residual axis and disregarding the obvious outliers,

we see that the variance of the residuals is fairly constant. A closer look at the

entering variables for each model reveals several interesting observations. Each model
incorporates similar independent variables and these variables are mostly interaction
| terms. This exi)la.i'ns why ouf exploratory factor plots were so difficult to'vinterpret.
Note that Stability or the interaction of Stability with Uniquencé§"a;e the most
significant variables in each model. In addition, it is interesting that the coefficients
of each term are nearly equal in value but opposite in sign. Also note that no formn
of the complexity index appears in any modél.‘ Despite these successful rhodels, the

influence of column, row and geometry effects is still not clear.

o 4.4.8 Factor Analysis. A factor analysis was performed using the unro-

tated, raw and normal eigenvalue residuals as our observed variables. Three vari-
ables limited our dimensionality to three factors. This analysis should -determine if
a simple structure is present in the residual eigenvalue data. After extracting the
common factors, the factor pattern was rotated using the normal varimax criterion.

This rotated factor pattern is illustrated in Table 4.7.

Table 4.7. Rotated Fa.cior Pattern For Root Mean Square Residuals

" Unrotated | .623 | .761 ]| .177
Raw 689 | .674 | .264
Normal | .761 | .624 {.172

The structure indicated by the bold faced factor loadings is identical to that
of the factor analysis for matching score and loading residuals. However, in this case
we have a very complicated structure with near equal moderate loadings on adjacent
factors. Note that our third factor loadings are becoming more significant relative
to the first two factors. Based upon this structure and the many interaction terms

in the preceding regression analysis, we can not identify any me’aningful, underlying

4-19

f1 S fs - e




relationship for the eigenvalue residual data. The absence of a sifnple structure indi-
cates our current metrics for measuring performance in terms of eigenvalue residuals
are insufficient. The factor plot for this analysis provides no additional insight into
the data structure, but it is included (Appendix J) for completeness. The absence
of any noticeable clustering of factor scores further illustrates the complexity of this

- particular data structure

4.4.4 Conclusions. Although the eigenvalue residuals were predicta.blel
with a linear regreésion model, these functions were very cémplicated and difficult
to interpret. Perhaps a different Set of independent variables would enable us to
identify a simpler underlying structure. Complexity due to geometry may still have
some influence on eigenvalue residuals, but ouf narrow complexity index range does

not allow us to assess this possibility.

4.5 Summary

At the onset of this study we intended to investigate three issues with respect

to Kaiser’s normal varimax criterion:

o How well does the normal varimax perform over a wide range of sample size,

structure complexity, variable communality and factor loading?

¢ In addition to restoring the known structure of an experimental factor pattern,
how effective is normal varimax in terms of returning variable loadings and

eigenvalues?
o With what types of data will normal varimax not outperform raw varimax?
o Are there circumstances where neither rotation criterion is desirable?

Some of our measures of merit assessed these performance areas very well and
_ others were not so successful. In particular, pattern matching in conjunction with our

chosen predictor variables best described the response of pattern recovery and how
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it is influenced by different aspects of factor pattern complexity. Although RMSR
and RMSER were very predictable, they did not allow us to identify a simple un-
derlying relationship with respect to factor pattern loading and eigenvalue recovery.

We propose that perhaps these are not key performance areas and factor pattern

structure recovery should be considered of primary importance. In terms of factor

pattern recovery, we clearly saw that the raw and normal varimax criterion were

both influenced by factor pattern ﬁniqueness and stability. At no time did we see

normal varimax outperform raw varimax in any performance area. Furthermore we
saw that at high levels of factor pattern uniqueness, neither rotated factor pattern

outperformed the unrotated factor pattern in factor pattern recovery. With more

study this final observation may provide valuable insight to the researcher conduct--

ing factor analysis. If duririg his analysis he finds no difference between the rotated
and unrotated factor patterns, perhaps.the researcher can concludé that he already
has already identified the simple structure, or there is no simple underlying struc-
ture present in his data. At that point he should select a different set of measured

variables, extract a factor pattern, and rotate to determine which is the case.
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V. Recommendations
5.1 Future Research

Future studies on the sensitivity of factor analysis techniques should certainly
be pursued. The source code produced for this Monté Carlo study is well suited
to work beyond the scope of this effort. The idea of geometric complexity may
be valid, but the range of our complexity index was too narrow to really asses the

validity of this assumption. Future work should also address other methods for

_characteriZing factor pattern behavior. Additional performance areas must also be

addressed before concluding factor pattern recovery is sufficient for assessing rotation
criterion accuracy. Obviously, future efforts shov'd also Le expanded to include

rotation methods other than varimax criterion.

We focused on smaller sample sizes to explore the threshold for satisfactory
fa.étor rotation. As measured by factor pattern recovery, this threshold appears to be
lower than expected. Perhaps RMSR and RMSER are heavily influenced by sample
size. This should be answered. In addition, sample size should be investigated for its
effect on rotation reliability where reliability is determined by the standard deviation

of factor pattern scores.

In this effort we made a dimensionality assumption by retaining four factors.
This was done to be consistent with Kaiser’s dimensionality in his validation of
the normal varimax criterion. Different variable-factor ratios may have a significant

impact on factor rotation.

Recall that when calculating the pattern matching scores, we converted each
observed factor pattern to ones and zeros. This provided a simple method for calcu-
lating matching scores, but some information was lost. Two adjacent factor loading
may be very close in value, yet one will ultimately be changed to a zero loading. The

zero loading may have been the true significant loading in the experimental factor
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pattern and just missed being matched. These types of occurrences also need to be

considered.

Finally, the Monte Cé.rlo method is a very valuable technique that should be
applied to research outside the field of factor analysis. Modern personal computers

and work stations make this approach readily accessible.
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Appendiz A. Data Set Generation
A.1 FORTRAN code

This Appendix lists the FORTRAN code for generating the sdmple data. It
fakes a covariance matrix, performs a Choleski decomposition and generates 100
data sets of random multivariate ﬁorma.l deviates for experimental factor pattern
number one (in this ca.se), smallest (N=17) sample size. The data file is formatted

as a 1700*4 ma.trxx

PROGRAM RAIDOH :
INTEGER I, IRANK, ISEED, K, LDRSIG, ¥OUT, MR, X
REAL R(i7,16), RSIG(IG 16) RCOV(16 16)

EXTERNAL CHFAC, RENMVN, RNSET, UMACH

CALL UMACH(2,NOUT)
NR=17

K =16

LDRSIG=16

LDR=17

#x»#+0PEN THE FILE CONTAINING THE COVARIANCE MATRIX FOR EXPERIMENTAL*#%*
*«x#+2FACTOR PATTERN 1, CALCULATED FROM THE PRODUCT OF THE LOADING#®%%sn#
- #s»#*MATRIX AND ITS TRANSPOSE. DONT FORGET TO HAVE ADDED THE DIAGONAL**

«*»x*MATRIX OF THE UNIQUENESS VALUES. READ COVARIANCE MATRIX AND OPEN##*
*x2+2FILE THAT WILL HOLD 100 SAMPLE SETS OF RANDOM MULTIVARIATE NORMALx**
220 sDEVIATES# #2288k ntfd s ke XA S kAR ERERRRRRRRERRARERARRARREREREERRR AR RERE

#s*#+THE LEADING 6#6 SUB MATRIX OF THE COVARIANCE MATRIX IS SHOWK BELOW*

*
» 1 .81 .81 .81 0 0
» .81 1 .81 .81 0 0
* .81 .81 1 81 0 0
* .81 .81 .81 1 0 0
» o 0 0 o 1 .81
. 0o o0 0 0 .81 1 )

OPElfa ,FILE=’structure.dat’)
3,»), ((rcov(I1, J) J-1 X, 1-1 ,K)

LOSE(3
OPEI(i FILE=’'sample.dat’) _
#»#*#CREATE DATA SETS INCREMENTING THE SEED WITH EACH SET###sssssnissssss
ISEED = 123457
DO 20 ¥=1,100
CALL CHFAC (X, RCOV, 18, 0.00001, IRANK, RSIG, LDRSIG)
CALL RNSET(ISEED
CALL RNMVE (IR K, RSIG, LDRSIG, R, LDR)
#+##*WRITE THE 100 DATA SETS TO QUTPUT FILE##sassusssrussns R RERRER

wnm: (1,10) ((R(I 1),3=1,K),1=1,0R)

ISEED = ISEED
20 Co ITIIUE
10 FORMAT (1X,16F8.4)
CLOSE(1)
END
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*++++THE LEADING 6+#6 SUB MATRIX OF THE 16+%1700 DATA SET IS SHOWN BELOW#»*

2.0616 1.5520 1.5405 2.0164 0.4144 0.1419
1.0833 1.1174 ~0.0433 1.7127 1.2355 1.9269
0.0826 0.6900 0.1764 1.3174 0.9498 1.0576
1.2777 0.5162 0.1561 0.2775 0.9056 1.0729
-1.2260 -0.7603 -0.6753 -0.6706 0.8173 0.6975
0.3385 0.4181 1.8470 1.1316 0.8911 11,3856

LA R X X N X X J




Appendia: B. Indez Routine

B.1 FORTRAN code

This A‘ppendix lists the FORTRAN code for creating an index vector for sub-
grouping the sample data file into 100 data sets having the appropriate number of

observations.

PROGRAN INDEX _
INTEGER K, NR, ¥, I, L, E(16,1)

MR =16

X =17

T =K+NR
OPEN(18,FILE=’index.dat’,FORM='FORMATTED)
1=0

DO 200 L=1,100
DO 100 ¥=1,17
E(K,1)=I+1
WRITE (18,10) E(K,1)
100 CONTINUE

I=1+1

200 CONTINUE

10 FORMAT (I3)
CLOSE(18)
END
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Initial Factor NMethod: Principal Compononts

Appendiz C. Unrotated Factor Patlern Generation

C.1 SAS code

- This Appendix lists the SAS code for gererating the observed unrotated factor
pattern for each of the 100 sampled data sets. The data file produced by the data

generation code is merged with an index vector so we can factor analyze 100 sub-

. groups éorresponding to the appropriate sample size. For example, the data file for

the small sample size will be a 170016 matrix. The index vector will range. from

1 to 100 with 17 iterations of each number. SAS will factor analyze the first 17

| observations, second 17 observations and so forth, until it has factor analyzed 100

sets of 1.7 observations.

options linesize=78;
F LENAME NEW 'sample dat’; :
DATA XX1; ) L
IRFILE IEV
input X1 X2 X3 X4 X6 X6 X7 XB X9 X10 X11 X12 X13 X14 X15 116.

DATA XX2;
IIFILE }index. dat’;
input index;
DATA XX3;
merge Xx2 IX1;
groc factor data=X13 method=prin nfactors=4;
dex;

INDEX=1

Prior Communality Est1natos ONE
Eigenvalues of the Correlation Matrix: Total = 16 Average

2 3
Eigenvalue 6.20865 3.1123 2.8689 i
Difterence 3.1842 0.2434 0.9304 1
Proportion 0.3935 0.1545 0.1793 0
Cumulative 0.3935 0.65881 0.7674 (+]
6 -7 -
Eigenvalue 0.5071 0.4127 0.2698 0
Difference 0.0944 0.1429 0.0359 0
Proportion 0.0317 0.0258 0.0169 0
Cumulative 0.9202 0.9460 0.9629 0
9 10 11
‘Eigenvalue 0.1213 0.1008 0.0560 0
Difference 0.0205 0.0448 0.0095 0
Proportion 0.0076 0.0063 0.0035 0
Cumulative 0.9861 0.9914 0.9949 0
13 14 15 16
C1




Eigenvalue
Difference
Proportion
Cumulative

0.0143
0.0115
0.0009
0.9998

4 factors will be retained by the NFACTOR criteri .

Factor Pattern

FACTOR1

-0.53209
-0.50755
~0.55022
-0.32998
0.63843
0.64913
0.48365
0.64715
-0.48783
-0.59957
-0.64469
-0.70671
0.708114
0.76861
0.82272
0.76217

FACTOR2

0.73981
0.74434
0.73031
0.82213
0.20186
0.48773
-0.12627
0.26590
-0.17746
-0.34110
-0.30897
-0.33157
0.27420
-0.006561
-0.075691
0.04723

0.0027 0.0001 .

0.0027

0.0002 0.0000

1.0000 1.0000
FACTOR3 FACTOR4
0.14878  0.09028
0.02454 0,.30341
0,16927 ~-0.07489
0.28371  0.11522
0.39150 ~0.49487
0.23666 ~0.47719
0.65814 -0.46377
0.36936 -0.39919
0.73006 0,12092
0.65957 0.11973
0.58889 ~0.02810
0.56528 0.07712
0.14132 0.51245
0.31612 0.51030
0.30864 0.43768
0.32964

0.47136
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in this research.

Appendii D. Monte Carlo Routine

D.1 FORTRAN code
This Appendix lists the FORTRAN codé for the Monte Carlo method used

The program reads the expérimenta.l factor patterns and the SAS

generated unrotated factor patterns. It utilizes a loop to read 100 observed unrotated
factor patterns that have been stored in one file by readiﬁg the first 1-16*4 factor
loadings, the second 17-32*4 factor loadings ect. It then calculates all predictor
“values, performs the raw and normal varimax rotations and calculates all measures -
of merit. The measures of merit are taken at the grand mean of the 100 observed
foactor patterns of each type (unrotated, raw and normal) p'rrtr)duced‘frorh every

experimental factor pattern.

LDA, LDB, LDT, MAXIT, NF, NORM, NVAR, K,
ROW, COL. SAMPLE,

: R,
SUHI SUHP SUMIR, SUHPR SUHIK SUNMPK,

HUN, HRH HKI COUNT

EPS, W, SR, ESR,PESR,AMESR,

SESR, RSESR KSESR AIRHITS, ABRHITS,
SSR, RSSR KSSR AIIBITS AIBRITS,
AHSR AIKHITS ABKHITS BAHESR RAHSR

'KAHSP TOTSIROH STRAT, HINDEX, PAHESR

CINDEX, THINDEX, PANESR, PKAMESR, PRAMESR,
PSESR, 'PRSESR,PAMSR, PESR
PESR, 'USSE, SDUM, USSM, SDUM, RSSE, SDRE,

‘RSSM, SDRM, KSSE, SDKE, KSSM, SDKN’ ,UUSSE,

SDUE, SDUUE PUSSH PSDUH URSSE USDRE, PRAMSR, S

-'PRSSH PSDRM, KAHESR UKSSE, USDKE PKSSH PSDKM’

(CPS=0.0, LDA=16, LDB=16, LDT=4, MAXIT=30,
NF=4, IORH-K lVAR'iG V=1, 0, LDD‘IGO.
SAMPLE=100)

A(LDA,NF), B(LDB IF) T(LD JF),
LOAD (VAR IF) clie

PRNUNM(16,4 SAHPLE) p nun 1,4,SANP
RIUHSIG éAanE) uxzq(xs) ﬁxlux(1 4 SAMPLE)
TOTH(165 ,NNUM(1,4 SAMPLE), KNUM(1,4 ,SAHPLB) INUN(4),
R(16,4, SAHPLE) n(1e 4) ER(1,4,SAKPLE),
PERM{16,4,24 psn§1 "4, SAMPLE J, PBER(I 4, SAMPLE),
PMESR(SAMPLE) . MSR(SAMPLE), PKMESR(SAMPLE},
xnsn§SAanng 'PRMESR(SAMPLE), RMSR(SAMPLE).
MESR(SAMPLE). PER(1,4, SAansi PMSR(SAMPLE)
RER(1,4,SAMPLE), RMESR(SAMPLE}, PRMESR(SAMPLE),
PRMSR{SAMPLE) KHESR(SAHPLE) Pxxsa(SAnPLE).
cB(16,1),7K(16,4)

_D(1€,4), TRLOAD(4,16), PRLOAD(4,4,24),
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—

‘i 4
Y NUMHITS(24,SAMPLE),U(16,4,24), RV(16,4,24),
& ‘ KV(16,4,24}
EXTERNAL  FROTA, WRRRN
F=0

##4#+4CREATE THE DATA FILE ALL STATISTICAL OUTPUTe#ssstesasssrorsts
OPEN( UNIT=26, FILE=’out.dat’)

“w#s«+40PEN AND READ THE DATA FILE CONTAINING THE EXPEuIHElTALttt*t*
#2202 sOADINGS MATRIX# #5035 aat kit d ks he s R R RaSRERRE LS JhEL RRREERS

OPE!§1 ,FILE=’in.dat’)
READ(1,*), ((LOAD(I 1),3=1,NF),I=1,6VAR)
CLOSE(1)

#++2#*CALCULATE THE STURCTURE INDEX FOR THE EXPERIMENTAL LOADINGS#*#
SheptMATRIX SRR R RhR R kR R RRBRRRRKRRRRKRSHRRERRS CREERRERRERERRRRERRE

CINDEX=0.0

TOTSIROW=0.0

DO 822 I=1,16

TOTSIROW= TDTSIROU+((LGAD(I 1)*LOAL(I 2))**2+(LOAD(I 1)#LOAD(X,3))**2
& +§LOAD§I 1;*LOAD§I 4;3**2+§LOAD$I 2§*LOAD$I 3;;

.CEN%OAgEI 2)*LOAD(I,4))#*2+(LOAD(I,3)#LOAD(I, 4))*+2)

IN
CINDEX=TOTSIROW/16.0

s+22&*CALCULATE THE UNIQUENESS INDEX FOR THE EXPERIAENTAL LOADIPLCws
L R Ty be T e T P PP E P Ty e 2

THINDEX=0.0

822

DO 932 I=1,16
u:xq§1;=o.o
TOTH(I)=0.0
932 CONTINUE
DO 842 I 1 18
DO 832
TOTH(I)-TOTH(I)+(LOAD\T J)*+2)
832 CONTIN

URIQ(I)=1-TOTH(I)

THINDEX=THINDEX+UNIQ(I)
842 CONTINUE

EINDEX=THINDEX/16.0

#++#+2CONDUCT BINARY TRANSFORMATION OF EXPERIMENTAL LOADINGS MATRIX#*#¢

DO 1021 I=1,NVAR
DO 1020 J=1,NF
D(I,J)=0
1020 CONTINUE '
1021 CONTINUE

DO 1032 I=1,NVAR
BIG-ABS(LOAD(I 1))

LOCBI
D(I, 1)=1
DO 1031 J=2
IF (AgS(LDAD(I ,1)) .GT. BIG) THEN
D(I,LOCBIG)=0
BIG-ABS(LOAD(I )
10CBIG= .

END IF
1031 CONTINUE
1032 CONTINUE

‘sasxs#IF DESIRED, LOADINGS MATRIX OF 1’S AND 0’S CAN BE WRITTEN QUT#s
* PRINT#, ’SIMPLE STRUCTURE PATTERN’
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* PRINT»

. WRITE(+,14)((D(1,)),3=1,0F),1=1,16)
. PRINT®

. WRITE(26,+)' °*

. WRITE(26,7000)
#7000 FORMAT(2iX,’INITIAL FACTOR PATTERE’)

* WRITE(26,+)’ °*

WRITE(26, 7001) ((D(I,3),J=1,0F),I=1,16)
.7001 FORNAT (23X ,414)

s2+35¢CALCULATE THE TRANSPOSE OF THE IIITIAL STRUCTURE SO PATTERN#%s%#
#0640 sMATCEING SCORE CAN BE CALCULATED## #4422t astsststsdssssstsssdrns

COL=1
DO 1132 I 1, IF
ROW=1

DO 1131 J =1,0V
TRLOA (I J)-D(BOU coL)
ROW=RO
1131 COITIIUE

COL=COL+1
1132 CONTINUE

#++444CALCULATE EIGENVALUES OF INITIAL LOADING STRUCTURE###ssnexssnsns

DO 900 J=1,NF
IIUH(J)=0.0
DO 800 I
IIUH(J)BIIUH(J)+L0AD(I J)we2
800 CONTINUE
900 CONTIRNUE

s¢4328sCALCULATE STABILITY RATIC## #4324 s4 24385088888t kdsntnihddn
STRAT=0.0
STRAT=STRAT+ABS(INUM(1)/INUM(4))

sess0¢AT THIS POINT, ALL THE EXPERIMENTAL FACTOR PATTERN HAS BEEN»s#ss
ssssssAND ALL PREDICTOR VARIABLES HAVE BEEN CALCULATED##s¢tssssrssssss

s200¢8INITIATE LOOP#» SESERRNRERRERE ;v--;vvv
sesesss+HERE WE INITIATE THE LOOP FOR READIRG IN 100 SAMPLE UNROTATEDs¢ss
ssse8+FACTOR PATTERES GENERATED IN SAS, CALCULATE OUR MEASURESs#sssssss

h “....HERIT AND STATISTICS..‘.‘“‘t".“#‘.“O‘#““‘#.“‘.“t“‘.‘tt‘

esessslE NUST ALSO INITIALIZE ALL OF OUR STATISTICS##ssesssctassesssars
SUMP=0 ' '

PKSESR=0.0 _
eeee+¢0PEN FILE AND READ THE 100 UNROTATED SAMPLE FACTOR PATTERNS#esss

)




s+2++«GENERATED FROM EACH OF QOUR Z=36 EXPERIMENTAL FACTOR PATTERNS#*#s=
OPEN(2,FILE=INITIAL(Z))
DO 300 S=1,100
READ(2,*), ((A(1,J),3=1,NF),I=1,BVAR)

wessxe(A(I,J) IS OUR SAMPLE UNROTATED FACTOR PATTERE##ssesssssrassnss

*+%x4+*GENERATE PERMUTATIONS OF OUR SAMPLE UNROTATED FACTOR PATTERN###%
sessss])Y PREPARATION FOR DETERMINING BEST PATTER MATCHING SCORE#*sxse#

DO 2001 I=1,NVAR
DO 2000 J=1.NF
PERM(I,J,1)=A(I,J)

2000 CONTINUE'

2001 CONTINUE
DO 2002

- w w w =
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2002 CONTINU

DO 2003 I=1
1,3

PERM(I,2,3

' 3,3
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2003 CONTINU

2004 CONTINUE
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2005 CONTINUE

DO 2006 I=1,16
PERM(I,1,6)=A(I,1
PERM(I.2,6)=A(I,4
PERN(I.3,6)=A(I,3
PERN(I.4,6)=A(I,2
2006 CONTINUE
DO 2007 I=1,16
PERN(I,1,7)5A(T,2
PERN(I.2,75-A(I 1
ng!\..a.7§=l I3
PanN(I,4.7)=A(1.4
2007 CONTINUE
DO 2008 I=1,16
PERN(I,1,8)=A(I,2
PERN(I.2.8)=A(I.1
PERM(I.3,8)=A(I.4
PERM(I.4,8)=A(1.3
2008 CONTINUE
DO 2009 I=1,16
PERK(T,1,0)°A(I,2
PERM(I.2.9)=A(I.3
PERN(I.3,8)=A(I.1
PERM(I.4,95=A(I 4




2009

2010

2011

. 2012

2013

2014

2015

2018

2017

2018

' DO 2012 I=1§

CONTIRUE

PERM(I,2,10
PERM(I,3,10
PERM(I 4,10
CONTINUE

DO 2010 I=1
psax§1,1,1o§

o 3 O
NN

Pt e Bt ef :
- ooew

W = e )

L g L N

UK I g

PERM(I,2,12
PERM(I,3,12
PERM(I,4,12
CONTINUE

DO 2013 I=1
Psnxgx.x.13§

PERH§1.1,12

U

e ol

LU g

e e O

CONTINUI

DO 2014 I=1,16
PERM(I,1,14
PERM(I,2,14)=
PERM(I, 3,14
PERM(I,4,14
CONTINUE

DO 2015 I=1,16
psnn;z.:.:s%

CONTINU.

DO 2016 I=1,16
PERM(X,1,16)=A(I,3
PERM(I,2,16)=A(I,2

I,4 :

1;1 — S -

PERM(I,3,18)=A
PERM(I,4,16)=A
CONTINUE

DO 2017 I=1,16

PERM(I,1,17)=A(I,3

PERN(I,2,17)=A(1,4

PERM(I,3,17)=A %.%
»

PERM(I,4,17)=A
CONTINUE

DO 2018 I=1,16

PERM(I,1,18)=A(1,3
PERM(I,2,18)=A(I,4
PERM(I,3,18 =: %.?

PERM(I,.4,18
CONTINUVE

PERM(I,2,19

DO 2019 I=1 16
PERNM I.S.lS;

PERM(I,1,19)=A(I,4
=A(1,1
=A(I,2

~N
¥
\
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2019

2020

2021

2022

2023

- 2024

PERM(I,4,19)=A(T,3)
CONTINUE

DO 2020 I=1,16
PERM(I,1,20)=A(I,}
PERM(I, 2 ,20)=A I,1
PERM I.3.20 =A(1,3
PERM(I,4,20)=A(I,2
CONTINUE

DO 2021 I=t
PERA(I,1,21
PERM(I,2,21
PERM(I,3,21
PERM(I 4,21
CONTINUE

LU LU g

= e b O
Clalalal
M

€3 e N o
R

PERM(I,2
PERM(I,3
PERM(I 4,
CONTINVE

D0 2022 I=
PERM(I,1,
’
14

DO 2023 I=1,1
PERM(I,1,23)=
PERM(I,2,23)=
PERM(I,3,23)=
PERM(I,4,23)=
CONTINUE

Lo ad

I,4

I,3

I,1

I,2
Do 2024 I=1,.16

PERM(I,1,24)=A(I,4
PERM(I, 2 24)=A(I,3
PERM(I, 3 124)=4A 1,2

PERM(I, 4 124)=4(1,1
CONTINUE'

s*x¢24PUT ALL PERMUTTED MATRICES INTO BINARY FORM IN PREPARATION TQ#«#»
ss22x¢POST MULTIPLY THE TRANSPGSE OF THE EXPERIMENTAL FACTOR PATTERN*#*
s¢+4*3T0 DETERNINE BEST FACTOR PATTERE SCORE##%¢ass gttt dirtsnssbhhhthnis

1080
1081

1091
1092
1093

DO 1093 H=1,24
DO 1081 I=1, JNVAR
DO 1080 J=1,IF
u(1,J,f8)=0
CONTINUE’
CONTINUE

DO 1092 I=1,HVAR
uc-ns(Pm(I 1,0))
LOCBIG=1
U(r,1,8)=1

DO 1091

IF t(,ullsgmalm(x ,J1,8)) .GT. BIG) THEN
u(I.LOCBIG,H)=0
BIG=ABS(PEEH(I E:)))
LOCBIG=)

END IF

CONTIRUE

CONTINUE

COXTINUE

s+#¢s+CALCULATE PATTERN MATCHING SCORE FOR EACH PERMUTATION OF SAMPLEess
¢24¢0v_BSERVED UNROTATED FACTOR PATTERN#S#4325244502 02 2aisnsatsdsssnass

D-6




DO 3000 H=1,24

DO 1142 I=1,4
PRLOAD(I,1,H)=0

DC 1141 J=1,NVAR .
PRLOAD(I,1,H)=PRLOAD(I,1,H)+(TRLOAD(I,J)#U(J,1,H))

1141 CONTINUE
1142 CONTINUE

DO 1144 I=1,4
‘ PRLOAD(I,2,H)=0
DO 1143 J=1,MVAR
PRLOAD(I,2,H)= PRLOAD(I 2 H)+(TRLOAD(I J)+U(J,2,H))
1143 CONTINUE

" 1144 CONTINUE

" DO 1146 I=1,4
PRLOAD(I 3,8)=0
DO 1146 J=1 IVA
PRLOAD(I 3,H)=PRLOAD(I,3 H)+(TRLOAD(I 1)»u(J3,3,H))

1145 CONTINUE
1146 CONTINUE

DO 1148 I=1,4
PRLOAD(I,4,H)=0
DO 1147 J=1,MVAR
PRLOAD(I,4,H)=PRLOAD(I,4 H)+(TRLOAD(I J)+U(J,4,8))
1147 CONTINUE
1148 CONTINUE

luuxxrs(a s)-o

DO 1149 I

lunaxrs(n sS-luxnrrs(n s)+an0An(1 I a)
1149 CONTI

3000 CONTINUE

¢s#+++DETERNINE BEST PERMUTATION BY DETERMINING HIGHEST SCORING###i%
ssxs44 (NUMHITS) OF ALL PERMUTATIONS##snssssksinstshsddshshdbbkrdhbhns

gux=lunnzrs(1 ,S)

DO 3soo H=2
(lunnirs(n S) .GT. HUN) THEX
gg:;luun S(H,S)

END IF
3500 CONTINUE
wesssssIF WE ARE NOV WORKING WITE THE LAST OF QUR SAMPLEs#assnsss

#2432 sJNROTATED FACTOR PATTERNS, CALCULATE THE AVERAGE®#sshkskis
saxesssNUMBER OF MATCHES FOR TEE SAMPLE#®&%%ksx4sasdstikthsnhnghs

wnﬁm +RUE
IF (S .EQ. SAMPLE) THE
A§gnxrs-anAr(sunp)/FLOAT(SAHPLB)
##¢¢++CALCULATE EIGENVALUES BEST PERMUTTED FACTOR PATTERN¢s#ssess
DO 275 J=1,4 '
PRNUN(1.J,5)=0.0
0o 250 I(%'Jss) =PKNUN(1,J,S)+PERM(T,J,
= +P ID)*+2
250 corr )

276  CONTINUE

*44+2sCALCULATE THE EIGEXVALUE RXSR FOR EACH BEST PERMUTED SAMPLE#*#*
sexsss UKROTATED SAMPLE FACTOR PATTERN###%#%ssstnshtbdshkdhssashsnes

DO 421 J=1,.4




421

427

PER(1,J,S)=(PRNUM(1,J,S)~IKUM(J))*»2
CONTINUE

PESR=0.0
DO 427 J
PESR—PESR+PER(1 1,8)

CONTINUE

PMESR(S)=SQRT(PESR/4.0)

s+s+++CALCULATE THE LOADING RMSR FOR EACH BEST PERMUTED SAMPLE##¢x#
sssss¢ UNROTATED SAMPLE FACTOR PATTERN®##uitsd ebhsshrbashsdkhhsehhiss

133
134

135
136

DO 134 I=1
DO 133 J=1.4

coun(: )= tLOAD(I J)-PERM(T,J,ID)) =2
cour:xus

SR=0.0

-DO 136 I=1,16

DO 135 J=1.4
SR=SR+R({I, J)

CONTINUE

CONTINUE

PMSR(S)=SQRT(SR/(16%4))

ssasse2]F WE ARE NOW WORKING WITH THE LAST OF OUR SAMPLE####x%#s
s+2x2#xUNROTATED FACTOR PATTERNS, CALCULATE THE AVERAGE#*»%sxsaas
###2¢s+EIGENVALUE RMSR FOR THE SAMPLEA SRR 200k 0 sk esa £ hRatsRbits

222

PAMESR=0.0
DO 222 J=1,SAMPLE

PAHESR-PAHESI+PHESB(J)
CONTINUE

PAMESR=PAMESR/SAMPLE

#++8¢3CALCULATE THE STANDARD DEVIATION OF THE EIGENVALUE###sassts
s*s++4RNSR FOR TBE SAMPLE OF OBSERVED UNROTATED PATTERNS###ssesss

335

USSE=0.0
DO 335 J=1,SAMPLE
co‘gSSE US§E+(PHESR(J) -FAMESR)#*2

SDUE=SQRT(USSE/(SAMPLE-1))

sssases]JF WE ARE NOW VORKING WITH THE LAST OF OUR SAMPLE###swssex

~ ##ses++UNROTATED FACTOR PATTERNS, CALCULATE THE AVERAGE##%essasss

s82582+LOADINGS RMSR FOR THE SAMPLE##%#242¢s4500stas 220t thtts

956

PAMSR=0.0
DO 956 J=1,SAMPLE

PAMSR=PAMSR+PMSR(J)
CONTINUE

PAMSR=PAMSR/SAMPLE

##22eCALCULATE THE STANDARD DEVIATION OF THE LOADINGS##ssssxsuss
s#++¢RMSR FOR THE SAMPLE OF OBSERVED UNROTATED PATTERNS*##stsuss

953

PUSSH=0.0

DO 953 J=1,SAMPLE
PUS’H-PUSSH+(PHSR(J)-PAHSR)*02

CONTINUE

PSDUM=SQRT (PUSSM/SANPLE)
END IF

ss++2+SET X TO O TO PERFORM RAW VARIMAX ROTATION ON EACH OF THE####
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#+++2«0BSERVED SAMPLE UIROTLTED FACTOR PATTERNS#ktstsssssuksstssas

K=0
&Eﬁ%% FROTA (NVAR, NF, A, LDA, NORNM, HAXIT. W, EPS, B, LDB, T,

#++0 44 CALCULATE EIGENVALUES RAW VARIMAX ROTATED FACTOR PATTERN###x#»
wexex+THE MUST BE DONE TO CALCULATE MEASURES OF MERIT AND TQ ENSUREs*
s+s*x+THE ROTATED FACTOR PATTERN IS IN THE CORRECT COLUMN ORDER##%#»
***‘*OSEE CHAPTER III FOR DETAILS

© DO 282 J=1,4
nEUM(1, ], s) 0.0
Do 267 I=1i ‘
NUM(1, 3 S)-llUH(i J,S)+B(I,J)**2
267  CONTINUE
282  CONTINUE

#*¢+3#+S0RT EACH COLUMN OF THE EIGENVALUES OF THE ROTATED PATTERN##%»
*4x4+PUT FACTOR PATTERN COLUMN IN CORRESPONDING ORDER###ssmexissssse

BIG=0.0
DO 1121 J=1

¥F
IF (mnuMl1,3,8) .GT. BIG) THEN
a:c=llu§(1.1.s)

1121 CONTINUE
NNUM(1,A4,S)=0.0

BIG=0.0
)T BIG) THEX

E
1123 CONTINUE
llUl(i BB,S)=0.0
BIG=0.0

Do 1125 J-
IF (nx 51 J.sg .GT. BIG) THEN
BIG=NNUN(1,],S

cc=J
END IF

128 CONTINUE
IIUH(16CC ,$)=0.0

D0 1127 J=1,NF ,
IF (NNUM(1,],S) .GT. BIG) THEN
BIG=NNUN(1,J,$)
DD=J
END IF
1127  CONTINUE

¥FUN(1,DD,S) =0.0
#4824 +REDEFINE ROTATED FACTOR PATTERN IN CORRECT FORM##ssssssss

DO 1128 I=1,NVAR : o .

CE(I,1)=B(I,AA .
c3(I,2)=B(I.BB : ' :
cB(I.3)=B(I.CC

CBLI.4)=B(1.DD o
1128  CONTINUE -

#++¢+sWRITE CORRECTED RAW VARIMAX FACTOR PATTERN###setasssssnsnssn




-;n?rt »CORRECTED normn RAW VARIMAX'®
wan‘s(* 10) ((CB(I,1),J=1 m I=1,LDB )

LE X X J

##s4*sGENERATE PERMUTATIONS OF OUR SAMPLE RAW VARIMAX ROTATED#*#*%#*s
#4+#+%sFACTOk PATTERN IN PREPARATION FOR DETERMINING BEST PATTERN#w*+x

DO 2211 I=1,NVAR
DO 2210 J=1,NF
PERH(I J,1)= =CB(I, )
2210 CONTINUE
2211 COITIIUE

DO 2212
PERHéI.

QOO0
Do

2212 CONTINU

o
o
N
[
-
(2]
- e w w b

2213 CONTINUE

2214 CONTINUE

2215 CONTINUE

PERM
2216 CONTIKUE

PBRH I, 1.7 =CB I,?
ERM(I 2.7 =CB(I,1
PERM(I,3,7)=CB(I,3
PERM(I,4,7)=CB(I,4
2217 CONTINUE
DO 2218 I=1,16
PERM(I,1,8)=CB(I,2
PERN(I,2,8)=CB(I,1
PERM(I,3,8)=CB(I,4
PERM(I,4,8)=CB(I,3

2218 CONTINUE
DO 2219 I=},16

PERN(I,1,9)=CB(I,2
PERN(I,2,9)=CB(I,3
PERX(I,3,9)=CB(I,1
PERM(I,4,9)=CB(I,4

2219 CONTINUE
DO 2220 I=1,16

Pt 110023
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2220

2221

2222

2223

2224

2226

2226

2227

2228

2229

2230

-DO 2222 I=1§16

PERmer S 19zeReE
CONTINUE

DO 2221 I=
P ,

1
11
11
i1
i1

NN
TS
(272212 )
eodd g
PN
B als
[ el )
g g N

PERM(I,2,12
PERM(I,3,12
PERM(I, 4,612
COXTINUE

DO 2223 I=1,16
PERH§1,1.13§

PERH%I.1,12

CONT1

DO 2226 I=1
PERM(I, 1,15
PERM(I.2.15
PERM(I.3.15
PERM(I.4.15
CONTINOE

DO 2226 I=1
PERH§1.1,16

AN
]

2211
AN~
lalalals]
. % v e

o a0 W
A

PERM(I.2.16
L
CONTINUE'

DO 2227 I=1
PEBH§1.1,17

N e P
[ ]
Q

o o o o
N~
= d 4
- voeoow

S AL
LS L )

PERM(I,3,17
PERM(I,4,17
CONZINUE

DO 2228 I=1
PERH§1.1,18

[ o}

-

N

-

[

-
Mt T ad

na

[212)

=34
NN~
lalala 1]
- wowoe

e

PERM(I,2,18
PERM(I,3,18
PERM(I 4,18
CONTINUE

DO 2229 I={
PBRHgI.I.iO

(21212721 ]

M

0t o o
PN NN~
lalalall]
> wwow

=0
A

PERM(I,2,19

1,4,19
CONTINUE

DO 2230 I=1

.
WS
Hesnn
[2]2]

o 09 &0 03
NSNS
=4 el = 4
Radadal
W
f S N
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DO 2231 I=1
PERM(I,1,21
PERM(I,2,21
PERM(I1,3,21
PERM(I,4,21
2231 CONTIYUE

DO 2232 I=1
PERM(I,1,22)=CB
- PERM(I,2,22)=CB
PERM(I,3,22
PERM(I, 4,22
2232 CONTINUE

DO 2233 I=1
PERM(I,1,23
PERM(I,2,23
PERM(I,3,23
PERM(I, 4,23
2233 CONTINUE

DO 2234 I=1, 16
PERM(I,1,24)=CB
PERM(I,2,24)=CB
PERM(I,3,24)=CB
PERM(I,4,24)=CB
2234 CONTINUE

ssx++sPUT ALL PERMUTTED MATRICES INTO BINARY FORN IN PREPARATION TO#%2#
»*+2#2P0ST MULTIPLY THE TRANSPOSE OF THE EXPERIMENTAL FACTOR PATTERN*s#
s*»+»#T0 DETERMINE BEST FACTOR PATTERN SCORE OF EACH OBSERVE RAW**#ak%s
s*xexxVARINAX ROTATED FACTOR PATTERN P ERERERR A RRREERRRSRRREE

DO 1053 n-z 24
DO 1041 I=1, svan
Do 1040 J=1
RV(I,J ,x)-o
1040 CONTINUE
1041 CONTINUE

DO 1062 I=1
BIG‘ABS(PERH(I b R))
LOCBIG—

RV(I,1,H)=1

DO 1061 J=2,X
IF (Ans(Pzan(I J,H)) .GT. s:c) THEN :
. RV(I,J,H)=1 e o el
RV(I.LOCBIG,H)=0 :
BIG=ABS(PERN(I,J,H))
LOCBIG=J
END IF
1054 CONTINUE
1052 CONTINUE
1063 CONTINUE

#*#3#2CALCULATE PATTERN MATCHING SCORE FOR EACH PERMUTATION OF SAMPLE###
#*+4%+0BSERVED RAV VARIMAX ROTATED FACTOR PATTERN##*smssssssansssessasss

DO 3001 H=1,24
DO 1152 I=1.4
PRLOAD(I.1,H)=0
20 §§53a32: !v§§ =PRLOAD(I,1,H)+(
= 1,8)+(TRLOAD (I, J)*RV
1161 CONTINUE ' (I,3)*RV(J,1,H))

1152 CONTINUE
DO 11564 I=1,4
PRLOAD(I,2,H)=0
Do 1153 J=1,MVAR
RLOAD(I, 2,H)=PRLOAD(I.2,H)+(TRLOAD(I.J)*EV(J.2.!))

1163 COITIIUE
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1154 CONTINUE

DO 1156 J=1,4 ,
PRLOAD(I,3,H)=0
DO 1156 J=1,NVAR
PRLOAD(I, 3, H)=PRLOAD(I, 3 n)+(TnL0AD(I NRV(I,3,0)
1156 CONTINUE _
1156 CONTINUE

DO 1168 I=1
PRLOZD(I, 4 B) 0 -
DO 1157 J=1,MVAR
PRLOAD(I 4,0)= PRLOAD(I 4 H)+(TRLDAD(I J)*RV(J.4 n))
1167 COPTIKNUE
1158 CONTINUE

NUMHITS(B,S)=0

DO 1159 I=1.4

NUMHRITS(H, SS‘IUHHITS(H S)+PRLOAD(I,I H)
- 1150 CONTINUE .

3001 CONTINUE

*»+++sDETERMIAE BEST PERMUTATION BY DETERMINING IIGHEST SCORIIG‘###O#
nnn(mnns) OF ALL PERMUTATIONS##sunsses.. e »eRen

" HRW=NUMHITS(1,S)
ID=0
DO 3600 H=2,24

IF (NUMBITS(H,S) .GT. HRVW) THEN
ggﬂ;lU!BIT (8 S)

o E¥D IF
3600 CONTINUE _
sssese+IF WE ARE NOW WORKING WITH THE LAST OF QUR SAMPLEs##sssess

eesne2+UNROTATED FACTOR PATTERFS, CALCULATE THE AVERAGEs##sxtsass
soess4+JUMBER OF MATCHES FOR THE SAMPLE##4s¢swe .

SUMPR=SUMPR+HRV
IF (S .EQ. SAMPLE) THEX
Elb‘ggnI =FLOAT(SUHPR)/FLDAT(SAHPLB)

#44+++CALCULATE THE EIGENVALUES FOR THE BEST PERNUTED OBSERVEDewssre
#essss SANPLE RAV VARINAX ROTATED FACTOR PATTERNs#ss#ssssssserasnores

DO 287 J=1,4
PIIUH(I J,8)=0.0
DO 266 I=1, 16
NUN(1,) »S) =PNNUM(1,J,S)+PERM(I,J,ID)*#2
268 COITII
287 CONTINUE

##44++CALCULATE THE EIGENVALUE RMSR FOR EACH BEST PERNUTED SAMPLEe«#
ssse44RAV VARIMAX ROTATED SAMPLE FACTOR PATTERN#####

‘ DO 492 J
Pnzn(1 ) S)=(PIIUH(1 J s) INUM(J))»*2
492 CONTINUE

PESR=0.0

DO 493 J=1
PESB=PESR+PRER(1 J,8)

493 CONTINUE

PRMESR(S)=SQRT(PESR/4) '

*++38+CALCULATE THE LOADING RMSR FOR EACH BEST PERMUTED SAMPLE®##s4
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#+xx4+RAY VARIMAX ROTATED SAMPLE FACTOR PATTERN#*#x#wasksndknshskis

DO 924 I=1
DO 923 J=1.4
R(I, )= ZLnAn(r J)-PERM(I,J, ID))**2
923  CONTINUE
924 CONTINUE

SR=0.0
DO 926 I=1
DO 925 J=1
sa-sn+at1 3
925 CONTINUE
926 CONTINUE

PRMSR(S)=SQRT(SR/(16+4))
sese292]F WE ARE KOV WORKING WITH THE LAST OF QUR SAMPLE®##sshssss
s*se434RAW VARIMAX ROTATED FACTOR PATTERNS, CALCULATE THE AVERAGE*
#4%¢22ETGENVALUE RMSR FOR THE SAMPLE*#¥##askdsksstkshphhssitsnss
IF (S .EQ. SAMPLE) THEN
PRAMESR=0,0
DO 888 J=1,SAMPLE
PRAMESR=PRAMESR+PRMESR(J)
88C  CONTINUE
' PRAMESR=PKAMESR/SAMPLE

#53s+CALCULATE THE STAZDARD DEVIATION OF THE LOADINGS*##sdsasnssss
s**+2RMSR FOR THE SAMPLE OF OBSERVED RAW VARIMAX ROTATED PATTERNS#

RSSE=0.0
DO 1084 J=1,SAMPLE
RSSE=RSSE+(PRMESR(J)-PRAMESR)##2
1084 CONTINUE
snax=sqar(nssa/(SAuan-1))
END IF

s#+++2SET K TO 1 TO PERFORM RAW VARIMAX ROTATION ON EACH OF THE###%
##+4+2+0BSERVED SAMPLE UNROTATED FACTOR PATTERNS**#%sstskssnnshsshts

K=1

.EQ%§ FROTA (NVAR, NF, A, LDA, NORM, MAXIT, W, EPS, C, LDB, T,

s#+s2sCALCULATE EIGENVALUES NORMAL VARIMAX ROTATED FACTOR PATTERN##+
sssessTHE MUST BE DOME TO CALCULATE MEASURES OF MERIT AND TO ENSURE*
ss*e2x+THE ROTATED FACTOR PATTERN IS IN THE CORRECT COLUMN ORDER*#%##

po 283 J—
5 $)=0.0

18
» ,S) =KRUK(1,J,S)+C(I, J)%+2
268 CONTINUE

- 283  CONTINUE

s*s2++S0RT EACH COLUMN OF THE EIGENVALUES OF THE ROTATED PATTERN#s##
sx¢22+PUT FACTOR PATTERN COLUMN IN CORRESPONDING CRDER»*##sssssnssss

BIG=0.0
DO 1221 J=1,KF -
IF (XNUM(1, 5.s) .GT. BIG) THENW
BIG=KNUM(1,J,5)
Ad=)
END IF

1221  CONTINUE
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KNUM(1,A4,5)=0.0

BIG=0.0

DO 1223 J=1,NF

IF (XKNUM(1,],S) .GT. BIG) THEN'
BIG=KNUM(1,J,S)
‘BB=J -

END IF

1223 CONTINUE
KlUH(l BB,S)=0.0
BIG=

DO 1225 J=1
IF (KNUM(1, k) S) .GT. BIG) THEN
BIG-KIUH(I, ,8)
CcC=J
END IF
"1226  CONTINUE

x{uu(i cc,s)=0.0
DO 1227 J=1
IF (XNUM(1,] s) .GT. BIG) THEN
BIG=KNUM(i,]1,S)
_DD=J .
END IF 3
1227 CONTINUE
" KNUM(1,DD,S) =0.0
DO 1228 I=1,NVAR
CK(I,1)=C(I.AA
CK(I.2)=C{I.BB
, cx(I.3)=c(I.cC
CK(I,4)=C(I.DD
1228  CONTIWUE
##4#¢4WRITE CORRECTED NORMAL VARIMAX FACTOR PATTERN###ssentssssssssns
PRIIT# *CORRECTED ROTATED NORMAL VARINAX’ ‘

»
» PRI
' : HRITB(t 10) ((CK(1,3), J=1,IF) I=1,LDB )

- sxssexfRITE UNCORRECTED lomm. VARINAX FACTOR lenltt"nuuuunn

. ;R%:;t >UNCORRECTED ROTATED NORMAL VARIMAX’
»

* VRITE(*,10)((c(I,J),J=1,0F),I=1,LDB )

» PRINT* ,

#x2++%CALCULATE EACH PERMUTATION OF WORMAL VARIMAX Iw‘umnt"unn: ‘

248284 FACTOR PATTERN##%022 0054280 255t 420 e RIS SRR Rs 0k SR AR AR USRS

DO 2111 I=1,NVAR
DO 2110 J=1,JF
PERH(I J, 1)-CK(I )]

P I
2112 CONTINUE
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2113

2114
_5115
2118
2117

2118

2119’

2120

2121

2122

2123

PERM(I,4,3)=CK(I,4)
CONTINGE' . .
DO 2114 I=1,16
PERM(T, 1,4)%CK(I,1
PERM(I 2 4)=CK{I 3
PERM(T.3'4)=CK(T 4
PERM(I.4.4)=CK(I.2
CONTINUE

DO 2116 I=1,16
PERM(I,1,5)=CK(I,1
PERM(I.2.5)=CK(I 4
PERM(I .3 5)=CK(I 2
PERM(T 4 89=CK(I'3
CONTINUE

DO 2116 I=1,16

PERM(T, 1,6)%CK(T, 1
PERM(I 2 89=CK(I 4
PERM(I 3 6)=CK(I'3
PERM(T 4 6)=CK(I'2
CONTINUE

DO 2117 I=1,16
PERM(T, 1,7)%CK(I,2
PERM(T 2 7)=CK(I'1
PERM(I.3.7)=CK(T 3
PERM(T 4 7)=CK(I'4
CONTINUE

DO 2118 I=1,16
PERN(I,1,8)%CK(I,2
PERM(I 2 8)=CK(I.1
PERM(I'3'89=CK(I 4
PERNM(I . 4.8)=CK(I.3
CONTINUE

DO 2119 I=1,16
PERM(T,1,9)%CK(T,2
PERM(I 2.9)=Chif.3
PERM(I.3.9 =cx$1.1
PERN(T 4.9)=CKlI 4
CONTINUE

DO 2120 I=1,16

PERM(T, 1, 10)=CK(I,2
PERM(I.2.10)=CK(I 3
PERM(I 3 10)=CK(I 4
PERM(I 4. 10)=CK(I 1
CONTIRUE

DO 2121 I=1,16
PERN(T,1,11}=CK(I,2)
PERM(I.2.115=CK(I 4
PERM(I .3 11)=CK 1,1§
PERM(T 4. 11)=CK(I 3
CONTINUE

DO 2122 I=1,16

PERM(T, 1, 12)=CK(I,2
PERM(T.2.12)=CK(I 4
PERM{I 3 12)=CK(I 3
PERM(I 4. 12)=CK(I 1
CONTINUE

DO 2123 T=1,16

PERN(T, 1, 13)=CK(I,3
PERM(T .2’ 13)=CK(I 1
PZRM(I.3.13)=CK(I 2
PERM(I.4.13)=CK(I 4
CONTINUE




2124

PER!}I ,1,14

PERH§1,3,11
PERX
CONTINUE

DO 2124 I= 1310

DO 2125 I=l

21285

2128

2127

2128

2129

2130

2131

2132

2133

‘CONTI

PERX(I, 3 15
PERN 1,4.15
CONTINUE -

DO 2126 I=1,1
PERH§I.1.16§=C

16
PERN(I 5)=CK(I,3
PERN(I, 2 15 =CK(I,2

=CK(I,1

=CK(I,4

PERM(I, 2,16
PERM(I,3,16

CONTINUE

DO 2127 I=l 16
PERN(I 1,17
PERM(I, 2 17
PERM(I, 3 17
PERM(I, 4 17
CONTINUE'

‘DO 2128 I=1,16

PERM(I, 3 18
PERNM I.Q.IB
CONTINUE

DO 2129 I=1,16

PERN(I,1.19)=CK(I,4

PERN(I,2,19)=CK(I,1
1,2
1,3

PERM(I,1,18)=CKX(I,3
PERN(I, 2 18)=CK(I,4
K(I,2
cx(1,1

PERN(I,3,19
PERN{I, 4,19
CONTINUE

DO 2130 I=1,16
ysnn;x.x.zog

DO 2131 I=1.1
PERN(I,1,21)=
PERN 1,2.21

PERI I, 4 ,21)=CK

DO 2132 I-l§

PBRH I 4,22

I.Qg
1,2
CK(1,3
=CK(I,1
DO 2133 I=1,16 i

DO 2134 I=1,16
PERN(I,1,24 -CXSI 4;
PERN(X, 2 ,24)~CK(I.3
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PERK(I.3,243=CKSI,2;

PERM(I,4.24)=CK

2134 COKRTINUE

sses#oPUT ALL PERMUTTED MATRICES INTC BINARY FORM IN PREPARATION TO#sess
s#¢2++POST MULTIPLY THE TRANSPOSE OF THE EXPERIMENTAL FACTOR PATTERN®we
seseesTO DETERHI-B BEST FACTOR PATTERR SCORE#ssssnnssssstssessssstdsnte

DO 1953 H=1,24
DO 1941 I=1,NVAR
DO 1940 J=
XV(I,] 55
1940 CONTINUE
1941 CONTINUE

DO 1952 I=1,NVAR
BIG=ABS(PERM(I,1,H))
LOCBIG=1
Kv(I,1, n) 1

DO 1951 J=2,K

IF (AB%(;ERH(I ,J,8)) .GT. BIG) THEX

KV{I.LOCBIG,H)=0
BIG=ABS{PERM(I,J,H))
LOCBIG=J
¥D IF
1951 CONTINUE
1952 CONTINUE
1963 CONTINUE

se02¢+CALCULATE PATTERN HATCHIIG SCORE FOR EACH PERMUTATION OF SAMPLE#s*+
s*22++0BSERVED NORMAL VARINAX ROTATED FACTOR PATTERN##ssisssesssssssrsss

DO 3002 H=1,24
DO 1162 I= 1 'a
PRLOAD(I 1 n)-u
DO 1161 J=1, lv
PRLOAD(I 1 H)=PRLOAD(I 1, H)*(TRLOAD(I J)-xv<J 1,H))
1161 CONTINUE
1162 CONTINUE

DO 1164 I=1,4
PRLOAD(I,2
1,%

i,

I,1

DO 1163 J=
PRLOAD{
1163 CONTINUE
1164 CONTINUE

=PRLOAD(I,2,8B)+(TRLOAD(I,J)*KV(J,2,H)) '

DO 1168 I=1,4 —-
PRLOAD(I,3,H)=0

DO 1165 J=1,NVAR
PRLOAD(I,3,H)=PRLOAD(I,3,H)+(TRLOAD(I,J)*KV(J,3,H))

1166 CONTINUE
1166 CONTINUE

DO 1168 I=1,4
PRLOAD(I .4 ,H)=0
00 %ﬁggAg(x :vﬁ) =PRLOAD(I, 4,K) (TRLO (
= + AD(I,J)*
1167 CONTINUE )*XV(J,4,H))
1168 CONTINUE

NUMBITS(H, S)'O

DO 1169 I=1

IUHBITS(H SS'IUHHITS(H S)+PRLOAD(I,I,H)
1169 CONTIN
3002 COKTIIUE

s#++¢2DETERMINE BEST PERMUTATION BY DETERMINING HIGHEST SCORING###%»
sxeses (NUNHITS) OF ALL PERMUTATIONSH#SXs82eansashn. soassstsatsssttnss

BXI=NUMHITS(1,S)
ID=0
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DO 3700 H=2,24
IF (IUKHITS(H S) .GT. HKI) TﬂEl
ESI;IUHHITS( s)

' END IF
3700 CORTINUE

eseeseelF VE ARE NOW WORKING WITH THE LAST OF OUR SAMPLEe#ssestees
eseesesORNAL VARIMAX ROTATED FACTOR PATTERNS, CALCULATE sesesses
eeeressTHE AVERAGE NUMBER OF MATCHES FOR THE SANPLEsssessesssesse

SUMPK=SUNPK+HKI
IF (S .EQ. SAMPLE) THEN
leAggnxrs =FLOAT(SUMPK) /FLOAT (SAMPLE)

s*2e#¢+CALCULATE EIGENVALUES BEST PERMUTTED kAISER VARINAX#¢snsreceses
DO 983 J=1,4

PKIUH(l J S) =PKWUN(1,J, S)+P£RH(I J,1D)e*2
968 CONTINUE
983 CORNTINUE o

OOOOOOCALCULATE THE EIGERVALUE RMSR FOR EACH BEST PERNMUTE!) SAMPLE+s
sessasNORMAL VARINAX ROTATED SAMPLE Facron PA'n'ERlnnnw-onnno

DO 442 J
: PlER(i 3 ,S)=(PKNI™(1,3,S)~INUN(J))#e2
442 NTINU
vssuso o
DO 443 J=1,4
- PESR=PESR+PPER(1,J,S)
443  CONTINUE

PKMESR(S)=SQRT(PESR/4)

¢++¢esCALCULATE THE LOADING RMSR FOR EACH BEST PER!UTED SANPLE#*#ee»
esees+NORMAL VARIMAX ROTATED SAMPLE FACTOR PATTERN» e

DO 914 I-I 16
. DO 913
M1, J)=(LOAD(I J)-PERM(I,J ID))**?
913 CONTIXU
914 COITIIUB

T TTTSR®0,0
DO 916 I=1,616
DO 915 J=1.4
SR=SR+RLI,J)
916  CONTINUE
916 . CONTINUE

PKNSR(S)=SORT(SR/(15+4))

s#veesslF VE ARE NOV VORKING WITH THE LAST OF OUR SAMPLEssssesess
s4eseeoBORNAL VARINAX ROTATED FACTOR PATTERNS, CALCULATE THEsssss
s#e40soAVERAGE EIGENVALUE RMSR FOR THE SAMPLESessssesses o

IF (S .EQ. SAMPLE) THEN
PKAMESR=0.0
DO 445 J=1,SAMPLE
PKAMESR=PKAMESR+PKMESR(J)
- 445 XTINUE
PKAMESR=PXAMESR/SAMPLE

*424¢sCALCULATE THE STANDARD DEVIATION OF THE EIGENVALUE##sssesss
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ssses+RMSR FOR THE SAMPLE OF OBSERVED UNROTATED PATTERNS#s#%essee

KSSE=0.0
DO 664 J=1,SAMPLE
KSSE=KSSE+(PKMESR(J)-PXAMESR) ¢#2
464 CONTINUE :

SDKE=SQRT(KSSE/(SAMPLE-1))

ssssnes]F WE ARE NOW WORKING WITH THE LAST OF OUR SAMPLE#®¢+skses
sessessNORMAL VARIMAX FACTOR PATTERNS, CALCULATE THE AVERAGEs#ses
ses409sLOADINGS RMSR FOR THE SANPLEw#®sssetsesentsnsvesesstsonens

PKAMSR=0.0

DO 956 J=1,SAMPLE

PKAMSR=PKAMSR+PXNSR(J)

956 CONTIRUE

PKAMSR=PKAMSR/SAMPLE

##+43+CALCULATE THE STANDARD DEVIATION OF THE LOADINGS##evesseass
#»#+s*+RMSR FOR THE SAMPLE OF OBSERVED UNROTATED PATTERNS##%2ssese

PXSSH=0.0 .
DO 673 J=1,SAMPLE
" PKS§E=PKS M+ (PKMSR(J)~PKANSR) ¢»2
[o7 B
PS  :=SQRT(PKSSM/(SAMPLE-1))
E\D IF l
esssesEND LOOP FOR READING 100 SANPLESsts#ssssasvtttsssssn

300 CONTINUE |
CLOSE(2) i

ss+++sYRITE DATA Tq tout.dat’ FILE#ssesasssstsasssnssssens
*++¢++COUNT=STRUCTUR NUMBER

0““‘BIIDEX=UIIQUAIESS INDEX
e»¢2++CINDEX=COMPLEXITY INDEX

#4222 ATBHITS=AVERAGE UNROTATED MATCHING SCORE
oott#tPAHSR=AVCRAGa UNROTATED LOADINGS RMSR
sse22¢PSDLA=STD DEJ UNROTATED LOADINGS RMSR
O‘OOOOPAHES§=AVERAdE URROTATED EIGENVALUE RMSR
sa+2¢¢SDUE=STD DEV UNROTATED EIGENVALUE RMSR
ss2¢2sABRHITS=AVERAGE ROTATED RAV MATCHING SCORE
*s424¢PRANSR=AVERAGE ROTATED RAVW LOADINGS RMSR
#9#4+3PSDRN=STD DEV ROTATED RAV LOADINGS RMSR
se¢+24PRANESR :AVERAGE ROTATED RAV EIGENVALUE RMSR
#*202¢SDRE=STD DEV ROTATED RAW BIGENVALUZ RMSR
e2+#85¢s ABKHITS=AVERAGE ROTATED NORMAL MATCHING SCORE
¢s2s¢24PKANSR=AVERAGE ROTATED NORMAL LOADINGS RMSR
ss*+esPSDKN=STD DEV ROTATED NORNAL LOADINGS RMSR
*e4+v#2PKANESR=AVERAGE ROTATED NORMAL EIGENVALUE RMSR
se#299SDKE=STD DEV ROTATED NORMAL EIGENVALUE RMSR

973
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WRITE(26, 7006)COUIT STRAT,HINDEX,CINDEX ,AIBHITS,
&PAMSR, PSDUN, PANESR, §
CABRHITS PRANSR, P@DRH PRAHESR :
&SDRE, ABKBITS PKAHSR PSDKH PKAHESR SDKE

7006 FORMAT(1XI3, 1XF6 3,1XF6.3,1XF6.3,1XF5.1
&1XF9.£,1XF9.5,1XF9. 5 1XF9. 5 1XF5. 1,1XF9. 5 1XF9.5,
&1XF9. 5 1XF9.5,1XFb6.1,1XF9.5,1XF9. 5 11?9 5 1XF9. 55“

CLOSE(26)
. END
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Appendiz E. Residual Plots

This Appendix illustrates the residual plots for the pattern matching regression
model. |

Residual Plot idual |
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'Appendia: F. Factor Plots

This Appendix illustrates the Factor plot for the pattern matching score factor
Analysis. ' | - o
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Appendiz G. Residual Plots

UNOEE RMER

- Resiaisk

This Appendix illustrates the residual plots for the RMSR regression model.
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Appendiz H. Fr:tor Plots

This-Appendix illustrates the Factor plot for the RMSR factor Aqdysis.
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Appendiz I. Residual Plets

This Appendix illus;tra.tes the residual plots for the RMSER‘regression. model.
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Appendiz J.* Factor Plots

This Appendix illustrates the Factor 'plot for the RMSER factor Analysis.
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Appendiz K. Kaiser Data
K.1 Correlation Matriz |

This Appendix lists the correlation matrix for the Holzinger and Harman psy-
chological tests (Holzinger and Harman, 1941). Note the matrix has been split into

two (24*8) matrices io fit on the page.

1 .318 .403 .468 .321 .335 .304 .332 .326 .118 .308 .314
.318 1 .317 .230 .285 .234 .157 .157 .195 .067 .150 .145
.403 .317 1 .305 .247 .2638 .223 .382 .184 -,.075 .091 .140
.468 .230 .30f 1 227 327 .335 .391 .325 .099 .110 .160
.321 .285 .247 .27 .622 .656 .578 .723 .311 .344 .2156
.335 .234 .268 .327 .622 1 .722 527 .714 .203 .353 .095
.304 .167 .223 .335 .656 .722 1 .619 .685 ,246 .232 .18!
.332 .167 .382 .391 578 .527 .619 1 .532 .285 .300 .271
.326 .195 .184 .325 .723 .714 .685 .5632 1  .170 .280 .113
.116 .057 -.075 .099 311 .203 .246 .285 .170 1 .484 .585
-308 .150 .091 .110 .344 .353 .232 .300 .280 .484 1 .428
.314 .145 .140 .160 .215 .095 .181 .271 .113 .585 .428 1
.489 .2392 .321 .327 .344 .309 .345 .3956 .280 .403 .535 .512
.125 .103 .177 .068 .280 .292 .236 .252 .260 .172 .350 .131
.238 .131 .065 .127 .229 .261 .172 .175°.248 .1E4 .240 .173
.414 272 ,263 .322 .187 .291 .180 .296 .242 .124 .314 .119
.176 .0056 .177 .187 .208 .273 .228 .255 .274 .289 362 .276
.368 .255 .211 .261 .263 .167 .169 .250 .208 .317 .350 .349
.270 .112 .312 .137 .190 .251 .226 .274 .274 .190 .290 .110
.365 .202 .297 .339 .398 .435 .451 .427 .446 .173 .202 .246
.369 .306 .165 .349 .318 .263 .314 .362 .266 .405 .399 .355
413 .232 .250 .380 .441 .386 .396 .357 .483 .160 .304 .193
.474 .348 .383 .335 .435 .431 .405 .5C1 .504 .262 ,251 .350
282 .211 203 .248 .420 .433 .437 .388 .424 .531 .412 .414

439 .125 .238 .414 ,176 .368 .270 .365 .369 .413 .474 .282
.239 .103 .131 .272 .005 .255 .112 .292 .306 .232 .348 .211
.321 .177 .065 .263 .177 .211 .312 .297 .165 .250 .383 .203
.327 .066 .127 .322 .187 .2561 .137 .339 .349 .380 .335 .248
.344°,280 .229 .187 .208 .263 .190 .398 .318 .441 ,.435 .420
.309 .292 .251 .291 .273 .167 .261 .435 .263 .386 .431 .433
.345 .236 .172 .180 .228 .159 .226 .451 .314 .396 .405 .437
.395 .262 .175 .296 .285 .25C .274 .427 .362 .357 .501 .388
.280 .260 .248 .242 .274 .208 .274 .446 .266 .483 .504 .424
.408 .172 .1654 .124 .289 .317 .190 .173 .405 .!60 .262 .531
.535 .360 .240 .314 .362 .350 .290 .202 .399 .304 .251 .412 -~ oo Tom o
.512 .131 .173 .118 .278 .349 .110 .246 .355 .193 .350 .414
1 .195 .139 .281 .194 .323 .263 .241 .425 .279 .382 .358
1956 1,370 .412 .341 .201 .20€ .302 .183 .243 .242 .304
.139 .370 1  .325 .345 .334 .192 .272 .232 .2468 .256 .165
.281 .412 .325 1  .324 .344 .258 .388 .348 .283 .360 .262
.194 .341 .345 .324 1  .448 .324 .262 .173 .273 .287 .326
.323 .201 .334 .344 .448 1  .358 .301 .357 .317 .272 .405
.263 .200 .192 .258 .324 .38 1  .167 .331 .342 .303 .374
.241 .302 .272 .388 .262 .301 .167 1  .413 .463 .509 .366
425 .183 .232 .348 .173 .357 .331 .413 1 .374 .451 .448
.279 .243 .246 .283 .273 .317 .342 .463 .374 1 503 .376
.382 .242 .256 .360 .287 .272 .303 .509 .451 .503 .434
.3568 .304 .1856 .262 .326 .405 .374 .366 .448 .375 .434 i
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